stable/freqtrade/freqai/utils.py

206 lines
7.2 KiB
Python
Raw Normal View History

import logging
from datetime import datetime, timezone
2022-09-16 16:17:41 +00:00
# for plot_feature_importance
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.io as pio
from plotly.subplots import make_subplots
from freqtrade.configuration import TimeRange
2022-08-26 13:30:28 +00:00
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.exchange.exchange import market_is_active
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
logger = logging.getLogger(__name__)
2022-08-26 13:30:28 +00:00
def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
"""
Called only once upon start of bot to download the necessary data for
populating indicators and training the model.
2022-08-26 13:30:28 +00:00
:param timerange: TimeRange = The full data timerange for populating the indicators
and training the model.
:param dp: DataProvider instance attached to the strategy
"""
2022-08-31 10:26:47 +00:00
if dp._exchange is None:
2022-08-26 13:30:28 +00:00
raise OperationalException('No exchange object found.')
2022-08-31 10:26:47 +00:00
markets = [p for p, m in dp._exchange.markets.items() if market_is_active(m)
or config.get('include_inactive')]
2022-08-26 13:30:28 +00:00
all_pairs = dynamic_expand_pairlist(config, markets)
timerange = get_required_data_timerange(config)
new_pairs_days = int((timerange.stopts - timerange.startts) / 86400)
2022-08-31 10:26:47 +00:00
refresh_backtest_ohlcv_data(
dp._exchange,
pairs=all_pairs,
timeframes=config["freqai"]["feature_parameters"].get("include_timeframes"),
datadir=config["datadir"],
timerange=timerange,
new_pairs_days=new_pairs_days,
erase=False,
data_format=config.get("dataformat_ohlcv", "json"),
trading_mode=config.get("trading_mode", "spot"),
prepend=config.get("prepend_data", False),
)
2022-08-26 13:30:28 +00:00
def get_required_data_timerange(
config: dict
) -> TimeRange:
"""
Used to compute the required data download time range
for auto data-download in FreqAI
"""
2022-08-26 13:30:28 +00:00
time = datetime.now(tz=timezone.utc).timestamp()
timeframes = config["freqai"]["feature_parameters"].get("include_timeframes")
max_tf_seconds = 0
for tf in timeframes:
secs = timeframe_to_seconds(tf)
if secs > max_tf_seconds:
max_tf_seconds = secs
startup_candles = config.get('startup_candle_count', 0)
indicator_periods = config["freqai"]["feature_parameters"]["indicator_periods_candles"]
# factor the max_period as a factor of safety.
max_period = int(max(startup_candles, max(indicator_periods)) * 1.5)
config['startup_candle_count'] = max_period
logger.info(f'FreqAI auto-downloader using {max_period} startup candles.')
additional_seconds = max_period * max_tf_seconds
2022-08-31 10:28:31 +00:00
startts = int(
time
- config["freqai"].get("train_period_days", 0) * 86400
- additional_seconds
)
2022-08-31 10:28:31 +00:00
stopts = int(time)
data_load_timerange = TimeRange('date', 'date', startts, stopts)
return data_load_timerange
# Keep below for when we wish to download heterogeneously lengthed data for FreqAI.
# def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
# """
# Called only once upon start of bot to download the necessary data for
# populating indicators and training a FreqAI model.
# :param timerange: TimeRange = The full data timerange for populating the indicators
# and training the model.
# :param dp: DataProvider instance attached to the strategy
# """
# if dp._exchange is not None:
# markets = [p for p, m in dp._exchange.markets.items() if market_is_active(m)
# or config.get('include_inactive')]
# else:
# # This should not occur:
# raise OperationalException('No exchange object found.')
# all_pairs = dynamic_expand_pairlist(config, markets)
# if not dp._exchange:
# # Not realistic - this is only called in live mode.
# raise OperationalException("Dataprovider did not have an exchange attached.")
# time = datetime.now(tz=timezone.utc).timestamp()
2022-08-26 13:30:28 +00:00
# for tf in config["freqai"]["feature_parameters"].get("include_timeframes"):
# timerange = TimeRange()
# timerange.startts = int(time)
# timerange.stopts = int(time)
# startup_candles = dp.get_required_startup(str(tf))
# tf_seconds = timeframe_to_seconds(str(tf))
# timerange.subtract_start(tf_seconds * startup_candles)
# new_pairs_days = int((timerange.stopts - timerange.startts) / 86400)
# # FIXME: now that we are looping on `refresh_backtest_ohlcv_data`, the function
# # redownloads the funding rate for each pair.
# refresh_backtest_ohlcv_data(
# dp._exchange,
# pairs=all_pairs,
# timeframes=[tf],
# datadir=config["datadir"],
# timerange=timerange,
# new_pairs_days=new_pairs_days,
# erase=False,
# data_format=config.get("dataformat_ohlcv", "json"),
# trading_mode=config.get("trading_mode", "spot"),
# prepend=config.get("prepend_data", False),
# )
2022-09-16 16:17:41 +00:00
def plot_feature_importance(model, feature_names, pair, train_dir, count_max=25) -> None:
"""
Plot Best and Worst Features by importance for CatBoost model.
Called once per sub-train.
Required: pip install kaleido
Usage: plot_feature_importance(
model=model,
feature_names=dk.training_features_list,
pair=pair,
train_dir=dk.data_path)
"""
# Gather feature importance from model
if "catboost.core" in str(model.__class__):
fi = model.get_feature_importance()
elif "lightgbm.sklearn" in str(model.__class__):
fi = model.feature_importances_
else:
raise NotImplementedError(f"Cannot extract feature importance for {model.__class__}")
# Data preparation
fi_df = pd.DataFrame({
"feature_names": np.array(feature_names),
"feature_importance": np.array(fi)
})
fi_df_top = fi_df.nlargest(count_max, "feature_importance")[::-1]
fi_df_worst = fi_df.nsmallest(count_max, "feature_importance")[::-1]
# Plotting
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.5)
fig.add_trace(
go.Bar(
x=fi_df_top["feature_importance"],
y=fi_df_top["feature_names"],
orientation='h', showlegend=False
), row=1, col=1
)
fig.add_trace(
go.Bar(
x=fi_df_worst["feature_importance"],
y=fi_df_worst["feature_names"],
orientation='h', showlegend=False
), row=1, col=2
)
fig.update_layout(
title_text=f"Best and Worst Features {pair}",
width=1000, height=600
)
# Create directory and save image
model_dir, train_name = str(train_dir).rsplit("/", 1)
fi_dir = Path(f"{model_dir}/feature_importance/{pair.split('/')[0]}")
fi_dir.mkdir(parents=True, exist_ok=True)
pio.write_image(fig, f"{fi_dir}/{train_name}.png", format="png")
logger.info(f"Freqai saving feature importance plot {fi_dir}/{train_name}.png")