2018-10-03 08:37:36 +00:00
|
|
|
from freqtrade.tests.conftest import get_patched_exchange
|
2018-10-02 14:07:33 +00:00
|
|
|
from freqtrade.edge import Edge
|
2018-10-03 12:23:10 +00:00
|
|
|
from pandas import DataFrame, to_datetime
|
|
|
|
import arrow
|
|
|
|
import numpy as np
|
2018-10-02 14:07:33 +00:00
|
|
|
|
|
|
|
|
|
|
|
# Cases to be tested:
|
2018-10-03 08:37:36 +00:00
|
|
|
# SELL POINTS:
|
2018-10-02 16:05:24 +00:00
|
|
|
# 1) Three complete trades within dataframe (with sell hit for all)
|
|
|
|
# 2) Two complete trades but one without sell hit (remains open)
|
|
|
|
# 3) Two complete trades and one buy signal while one trade is open
|
|
|
|
# 4) Two complete trades with buy=1 on the last frame
|
2018-10-03 08:37:36 +00:00
|
|
|
###################################################################
|
|
|
|
# STOPLOSS:
|
2018-10-02 14:07:33 +00:00
|
|
|
# 5) Candle drops 8%, stoploss at 1%: Trade closed, 1% loss
|
|
|
|
# 6) Candle drops 4% but recovers to 1% loss, stoploss at 3%: Trade closed, 3% loss
|
2018-10-02 16:05:24 +00:00
|
|
|
# 7) Candle drops 4% recovers to 1% entry criteria are met, candle drops
|
2018-10-02 14:07:33 +00:00
|
|
|
# 20%, stoploss at 2%: Trade 1 closed, Loss 2%, Trade 2 opened, Trade 2 closed, Loss 2%
|
2018-10-03 08:37:36 +00:00
|
|
|
####################################################################
|
|
|
|
# PRIORITY TO STOPLOSS:
|
2018-10-02 16:05:24 +00:00
|
|
|
# 8) Stoploss and sell are hit. should sell on stoploss
|
2018-10-03 08:37:36 +00:00
|
|
|
####################################################################
|
2018-10-02 14:07:33 +00:00
|
|
|
|
2018-10-03 12:23:10 +00:00
|
|
|
ticker_start_time = arrow.get(2018, 10, 3)
|
|
|
|
ticker_interval_in_minute = 5
|
|
|
|
|
|
|
|
|
2018-10-02 14:07:33 +00:00
|
|
|
def test_filter(mocker, default_conf):
|
|
|
|
exchange = get_patched_exchange(mocker, default_conf)
|
|
|
|
edge = Edge(default_conf, exchange)
|
|
|
|
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
|
|
|
return_value=[
|
|
|
|
['E/F', -0.01, 0.66, 3.71, 0.50, 1.71],
|
|
|
|
['C/D', -0.01, 0.66, 3.71, 0.50, 1.71],
|
|
|
|
['N/O', -0.01, 0.66, 3.71, 0.50, 1.71]
|
|
|
|
]
|
|
|
|
))
|
|
|
|
|
|
|
|
pairs = ['A/B', 'C/D', 'E/F', 'G/H']
|
|
|
|
assert(edge.filter(pairs) == ['E/F', 'C/D'])
|
2018-10-02 16:05:24 +00:00
|
|
|
|
|
|
|
|
2018-10-03 08:37:36 +00:00
|
|
|
def _validate_ohlc(buy_ohlc_sell_matrice):
|
|
|
|
for index, ohlc in enumerate(buy_ohlc_sell_matrice):
|
|
|
|
# if not high < open < low or not high < close < low
|
|
|
|
if not ohlc[3] > ohlc[2] > ohlc[4] or not ohlc[3] > ohlc[5] > ohlc[4]:
|
|
|
|
raise Exception('Line ' + str(index + 1) + ' of ohlc has invalid values!')
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
def _build_dataframe(buy_ohlc_sell_matrice):
|
|
|
|
_validate_ohlc(buy_ohlc_sell_matrice)
|
|
|
|
tickers = []
|
|
|
|
for ohlc in buy_ohlc_sell_matrice:
|
|
|
|
ticker = {
|
2018-10-03 12:23:10 +00:00
|
|
|
# ticker every 5 min
|
|
|
|
'date': ticker_start_time.shift(minutes=(ohlc[0] * 5)).timestamp * 1000,
|
2018-10-03 08:37:36 +00:00
|
|
|
'buy': ohlc[1],
|
|
|
|
'open': ohlc[2],
|
|
|
|
'high': ohlc[3],
|
|
|
|
'low': ohlc[4],
|
|
|
|
'close': ohlc[5],
|
|
|
|
'sell': ohlc[6]
|
|
|
|
}
|
|
|
|
tickers.append(ticker)
|
2018-10-03 12:23:10 +00:00
|
|
|
|
|
|
|
frame = DataFrame(tickers)
|
|
|
|
frame['date'] = to_datetime(frame['date'],
|
|
|
|
unit='ms',
|
|
|
|
utc=True,
|
|
|
|
infer_datetime_format=True)
|
|
|
|
|
|
|
|
return frame
|
|
|
|
|
|
|
|
|
|
|
|
def test_process_expectancy(mocker, default_conf):
|
|
|
|
default_conf['edge']['min_trade_number'] = 2
|
|
|
|
exchange = get_patched_exchange(mocker, default_conf)
|
|
|
|
|
|
|
|
def get_fee():
|
|
|
|
return 0.001
|
|
|
|
|
|
|
|
exchange.get_fee = get_fee
|
|
|
|
edge = Edge(default_conf, exchange)
|
|
|
|
|
|
|
|
trades = [
|
|
|
|
{'pair': 'TEST/BTC',
|
|
|
|
'stoploss': -0.9,
|
|
|
|
'profit_percent': '',
|
|
|
|
'profit_abs': '',
|
|
|
|
'open_time': np.datetime64('2018-10-03T00:05:00.000000000'),
|
|
|
|
'close_time': np.datetime64('2018-10-03T00:10:00.000000000'),
|
|
|
|
'open_index': 1,
|
|
|
|
'close_index': 1,
|
|
|
|
'trade_duration': '',
|
|
|
|
'open_rate': 17,
|
|
|
|
'close_rate': 17,
|
|
|
|
'exit_type': 'sell_signal'}, # sdfsdf
|
|
|
|
|
|
|
|
{'pair': 'TEST/BTC',
|
|
|
|
'stoploss': -0.9,
|
|
|
|
'profit_percent': '',
|
|
|
|
'profit_abs': '',
|
|
|
|
'open_time': np.datetime64('2018-10-03T00:20:00.000000000'),
|
|
|
|
'close_time': np.datetime64('2018-10-03T00:25:00.000000000'),
|
|
|
|
'open_index': 4,
|
|
|
|
'close_index': 4,
|
|
|
|
'trade_duration': '',
|
|
|
|
'open_rate': 20,
|
|
|
|
'close_rate': 20,
|
|
|
|
'exit_type': 'sell_signal'},
|
|
|
|
|
|
|
|
{'pair': 'TEST/BTC',
|
|
|
|
'stoploss': -0.9,
|
|
|
|
'profit_percent': '',
|
|
|
|
'profit_abs': '',
|
|
|
|
'open_time': np.datetime64('2018-10-03T00:30:00.000000000'),
|
|
|
|
'close_time': np.datetime64('2018-10-03T00:40:00.000000000'),
|
|
|
|
'open_index': 6,
|
|
|
|
'close_index': 7,
|
|
|
|
'trade_duration': '',
|
|
|
|
'open_rate': 26,
|
|
|
|
'close_rate': 34,
|
|
|
|
'exit_type': 'sell_signal'}
|
|
|
|
]
|
|
|
|
|
|
|
|
trades_df = DataFrame(trades)
|
|
|
|
trades_df = edge._fill_calculable_fields(trades_df)
|
|
|
|
final = edge._process_expectancy(trades_df)
|
|
|
|
assert len(final) == 1
|
2018-10-03 08:37:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_three_complete_trades(mocker, default_conf):
|
|
|
|
exchange = get_patched_exchange(mocker, default_conf)
|
|
|
|
edge = Edge(default_conf, exchange)
|
|
|
|
|
|
|
|
stoploss = -0.90 # we don't want stoploss to be hit in this test
|
2018-10-02 16:05:24 +00:00
|
|
|
three_sell_points_hit = [
|
2018-10-03 08:37:36 +00:00
|
|
|
# Date, Buy, O, H, L, C, Sell
|
|
|
|
[1, 1, 15, 20, 12, 17, 0], # -> should enter the trade
|
|
|
|
[2, 0, 17, 18, 13, 14, 1], # -> should sell (trade 1 completed)
|
|
|
|
[3, 0, 14, 15, 11, 12, 0], # -> no action
|
|
|
|
[4, 1, 12, 25, 11, 20, 0], # -> should enter the trade
|
|
|
|
[5, 0, 20, 30, 19, 25, 1], # -> should sell (trade 2 completed)
|
|
|
|
[6, 1, 25, 27, 22, 26, 1], # -> buy and sell, should enter the trade
|
|
|
|
[7, 0, 26, 36, 25, 35, 1], # -> should sell (trade 3 completed)
|
2018-10-02 16:05:24 +00:00
|
|
|
]
|
2018-10-03 08:37:36 +00:00
|
|
|
|
|
|
|
ticker_df = _build_dataframe(three_sell_points_hit)
|
|
|
|
trades = edge._find_trades_for_stoploss_range(ticker_df, 'TEST/BTC', [stoploss])
|
|
|
|
|
2018-10-03 12:23:10 +00:00
|
|
|
# Three trades must have occured
|
2018-10-03 08:37:36 +00:00
|
|
|
assert len(trades) == 3
|
|
|
|
|
|
|
|
# First trade check
|
2018-10-03 12:23:10 +00:00
|
|
|
# open time should be on line 1
|
|
|
|
assert trades[0]['open_time'] == np.datetime64(ticker_start_time.shift(
|
|
|
|
minutes=(1 * ticker_interval_in_minute)).timestamp * 1000, 'ms')
|
|
|
|
|
|
|
|
# close time should be on line 2
|
|
|
|
assert trades[0]['close_time'] == np.datetime64(ticker_start_time.shift(
|
|
|
|
minutes=(2 * ticker_interval_in_minute)).timestamp * 1000, 'ms')
|
2018-10-03 08:37:36 +00:00
|
|
|
|
|
|
|
# Second trade check
|
2018-10-03 12:23:10 +00:00
|
|
|
# open time should be on line 4
|
|
|
|
assert trades[1]['open_time'] == np.datetime64(ticker_start_time.shift(
|
|
|
|
minutes=(4 * ticker_interval_in_minute)).timestamp * 1000, 'ms')
|
|
|
|
|
|
|
|
# close time should be on line 5
|
|
|
|
assert trades[1]['close_time'] == np.datetime64(ticker_start_time.shift(
|
|
|
|
minutes=(5 * ticker_interval_in_minute)).timestamp * 1000, 'ms')
|
2018-10-03 08:37:36 +00:00
|
|
|
|
|
|
|
# Third trade check
|
2018-10-03 12:23:10 +00:00
|
|
|
# open time should be on line 6
|
|
|
|
assert trades[2]['open_time'] == np.datetime64(ticker_start_time.shift(
|
|
|
|
minutes=(6 * ticker_interval_in_minute)).timestamp * 1000, 'ms')
|
|
|
|
|
|
|
|
# close time should be on line 7
|
|
|
|
assert trades[2]['close_time'] == np.datetime64(ticker_start_time.shift(
|
|
|
|
minutes=(7 * ticker_interval_in_minute)).timestamp * 1000, 'ms')
|