2017-06-05 19:17:10 +00:00
|
|
|
import time
|
2017-05-24 19:52:41 +00:00
|
|
|
from datetime import timedelta
|
|
|
|
import logging
|
2017-08-27 14:12:28 +00:00
|
|
|
import arrow
|
2017-05-24 19:52:41 +00:00
|
|
|
import requests
|
|
|
|
from pandas.io.json import json_normalize
|
2017-09-02 08:56:56 +00:00
|
|
|
from pandas import DataFrame
|
2017-09-01 18:40:12 +00:00
|
|
|
import talib.abstract as ta
|
|
|
|
|
2017-05-24 19:52:41 +00:00
|
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG,
|
|
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2017-09-09 09:26:33 +00:00
|
|
|
def get_ticker(pair: str, minimum_date: arrow.Arrow) -> dict:
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2017-09-09 09:26:33 +00:00
|
|
|
Request ticker data from Bittrex for a given currency pair
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
|
|
|
url = 'https://bittrex.com/Api/v2.0/pub/market/GetTicks'
|
2017-05-24 20:23:20 +00:00
|
|
|
headers = {
|
|
|
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
|
|
|
|
}
|
2017-05-24 19:52:41 +00:00
|
|
|
params = {
|
|
|
|
'marketName': pair.replace('_', '-'),
|
|
|
|
'tickInterval': 'OneMin',
|
|
|
|
'_': minimum_date.timestamp * 1000
|
|
|
|
}
|
2017-05-24 20:23:20 +00:00
|
|
|
data = requests.get(url, params=params, headers=headers).json()
|
2017-05-24 19:52:41 +00:00
|
|
|
if not data['success']:
|
|
|
|
raise RuntimeError('BITTREX: {}'.format(data['message']))
|
2017-09-09 09:26:33 +00:00
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
def parse_ticker_dataframe(ticker: list, minimum_date: arrow.Arrow) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Analyses the trend for the given pair
|
|
|
|
:param pair: pair as str in format BTC_ETH or BTC-ETH
|
|
|
|
:return: DataFrame
|
|
|
|
"""
|
2017-09-10 06:51:56 +00:00
|
|
|
df = DataFrame(ticker) \
|
|
|
|
.drop('BV', 1) \
|
|
|
|
.rename(columns={'C':'close', 'V':'volume', 'O':'open', 'H':'high', 'L':'low', 'T':'date'}) \
|
|
|
|
.sort_values('date')
|
|
|
|
return df[df['date'].map(arrow.get) > minimum_date]
|
2017-09-09 10:02:47 +00:00
|
|
|
|
|
|
|
|
|
|
|
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Adds several different TA indicators to the given DataFrame
|
|
|
|
"""
|
2017-09-12 08:47:23 +00:00
|
|
|
dataframe['ema'] = ta.EMA(dataframe, timeperiod=33)
|
|
|
|
dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.22)
|
|
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
2017-09-02 08:56:56 +00:00
|
|
|
|
2017-05-24 19:52:41 +00:00
|
|
|
return dataframe
|
|
|
|
|
|
|
|
|
2017-09-09 13:32:53 +00:00
|
|
|
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2017-09-09 13:32:53 +00:00
|
|
|
Based on TA indicators, populates the buy trend for the given dataframe
|
2017-09-02 08:56:56 +00:00
|
|
|
:param dataframe: DataFrame
|
2017-09-09 13:32:53 +00:00
|
|
|
:return: DataFrame with buy column
|
2017-05-24 23:11:35 +00:00
|
|
|
"""
|
2017-09-12 08:47:23 +00:00
|
|
|
prev_sar = dataframe['sar'].shift(1)
|
|
|
|
prev_close = dataframe['close'].shift(1)
|
|
|
|
prev_sar2 = dataframe['sar'].shift(2)
|
|
|
|
prev_close2 = dataframe['close'].shift(2)
|
|
|
|
|
|
|
|
# wait for stable turn from bearish to bullish market
|
2017-05-24 23:11:35 +00:00
|
|
|
dataframe.loc[
|
2017-09-12 08:47:23 +00:00
|
|
|
(dataframe['close'] > dataframe['sar']) &
|
|
|
|
(prev_close > prev_sar) &
|
|
|
|
(prev_close2 < prev_sar2),
|
|
|
|
'swap'
|
2017-05-24 19:52:41 +00:00
|
|
|
] = 1
|
2017-09-12 08:47:23 +00:00
|
|
|
|
|
|
|
# consider prices above ema to be in upswing
|
|
|
|
dataframe.loc[dataframe['ema'] <= dataframe['close'], 'upswing'] = 1
|
|
|
|
|
|
|
|
dataframe.loc[
|
|
|
|
(dataframe['upswing'] == 1) &
|
|
|
|
(dataframe['swap'] == 1) &
|
|
|
|
(dataframe['adx'] > 25), # adx over 25 tells there's enough momentum
|
|
|
|
'buy'] = 1
|
2017-09-09 13:32:53 +00:00
|
|
|
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
2017-09-12 08:47:23 +00:00
|
|
|
|
2017-05-24 19:52:41 +00:00
|
|
|
return dataframe
|
|
|
|
|
|
|
|
|
2017-09-09 10:16:14 +00:00
|
|
|
def analyze_ticker(pair: str) -> DataFrame:
|
2017-09-09 13:32:53 +00:00
|
|
|
"""
|
|
|
|
Get ticker data for given currency pair, push it to a DataFrame and
|
|
|
|
add several TA indicators and buy signal to it
|
|
|
|
:return DataFrame with ticker data and indicator data
|
|
|
|
"""
|
2017-09-10 06:51:56 +00:00
|
|
|
minimum_date = arrow.utcnow().shift(hours=-6)
|
2017-09-09 10:16:14 +00:00
|
|
|
data = get_ticker(pair, minimum_date)
|
|
|
|
dataframe = parse_ticker_dataframe(data['result'], minimum_date)
|
|
|
|
dataframe = populate_indicators(dataframe)
|
2017-09-09 13:32:53 +00:00
|
|
|
dataframe = populate_buy_trend(dataframe)
|
2017-09-09 10:16:14 +00:00
|
|
|
return dataframe
|
|
|
|
|
2017-09-01 19:11:46 +00:00
|
|
|
def get_buy_signal(pair: str) -> bool:
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2017-09-09 13:32:53 +00:00
|
|
|
Calculates a buy signal based several technical analysis indicators
|
2017-05-24 19:52:41 +00:00
|
|
|
:param pair: pair in format BTC_ANT or BTC-ANT
|
2017-09-09 13:32:53 +00:00
|
|
|
:return: True if pair is good for buying, False otherwise
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2017-09-09 10:16:14 +00:00
|
|
|
dataframe = analyze_ticker(pair)
|
2017-05-24 19:52:41 +00:00
|
|
|
latest = dataframe.iloc[-1]
|
2017-05-24 23:11:35 +00:00
|
|
|
|
|
|
|
# Check if dataframe is out of date
|
|
|
|
signal_date = arrow.get(latest['date'])
|
|
|
|
if signal_date < arrow.now() - timedelta(minutes=10):
|
|
|
|
return False
|
|
|
|
|
2017-09-09 13:32:53 +00:00
|
|
|
signal = latest['buy'] == 1
|
2017-08-27 13:50:59 +00:00
|
|
|
logger.debug('buy_trigger: %s (pair=%s, signal=%s)', latest['date'], pair, signal)
|
2017-05-24 19:52:41 +00:00
|
|
|
return signal
|
|
|
|
|
|
|
|
|
2017-09-02 08:56:56 +00:00
|
|
|
def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
|
|
|
Plots the given dataframe
|
2017-09-02 08:56:56 +00:00
|
|
|
:param dataframe: DataFrame
|
2017-05-24 19:52:41 +00:00
|
|
|
:param pair: pair as str
|
|
|
|
:return: None
|
|
|
|
"""
|
|
|
|
|
2017-06-05 19:17:10 +00:00
|
|
|
import matplotlib
|
|
|
|
|
|
|
|
matplotlib.use("Qt5Agg")
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
2017-09-12 08:47:23 +00:00
|
|
|
# Two subplots sharing x axis
|
|
|
|
fig, (ax1, ax2) = plt.subplots(2, sharex=True)
|
2017-08-27 13:40:27 +00:00
|
|
|
fig.suptitle(pair, fontsize=14, fontweight='bold')
|
2017-09-12 08:47:23 +00:00
|
|
|
ax1.plot(dataframe.index.values, dataframe['sar'], 'g_', label='pSAR')
|
2017-05-24 19:52:41 +00:00
|
|
|
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
|
|
|
|
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
|
2017-09-12 08:47:23 +00:00
|
|
|
ax1.plot(dataframe.index.values, dataframe['ema'], '--', label='EMA(20)')
|
|
|
|
ax1.plot(dataframe.index.values, dataframe['buy'], 'bo', label='buy')
|
2017-05-24 19:52:41 +00:00
|
|
|
ax1.legend()
|
|
|
|
|
2017-09-12 08:47:23 +00:00
|
|
|
ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
|
|
|
|
ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
|
2017-05-24 21:28:40 +00:00
|
|
|
ax2.legend()
|
2017-05-24 19:52:41 +00:00
|
|
|
|
|
|
|
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
|
|
|
# all but bottom plot.
|
2017-08-27 13:40:27 +00:00
|
|
|
fig.subplots_adjust(hspace=0)
|
|
|
|
plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
|
2017-05-24 19:52:41 +00:00
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2017-09-08 21:10:22 +00:00
|
|
|
# Install PYQT5==5.9 manually if you want to test this helper function
|
2017-05-24 19:52:41 +00:00
|
|
|
while True:
|
2017-09-12 08:49:10 +00:00
|
|
|
test_pair = 'BTC_ANT'
|
2017-06-05 19:17:10 +00:00
|
|
|
#for pair in ['BTC_ANT', 'BTC_ETH', 'BTC_GNT', 'BTC_ETC']:
|
|
|
|
# get_buy_signal(pair)
|
2017-09-12 08:49:10 +00:00
|
|
|
plot_dataframe(analyze_ticker(test_pair), test_pair)
|
2017-06-05 19:17:10 +00:00
|
|
|
time.sleep(60)
|