stable/freqtrade/tests/optimize/test_backtesting.py

924 lines
34 KiB
Python
Raw Normal View History

# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import json
import math
2018-03-17 21:44:47 +00:00
import random
from typing import List
2018-01-05 09:23:12 +00:00
from unittest.mock import MagicMock
2018-03-17 21:44:47 +00:00
import numpy as np
2018-03-17 21:44:47 +00:00
import pandas as pd
2018-07-04 07:31:35 +00:00
import pytest
2018-03-17 21:44:47 +00:00
from arrow import Arrow
2018-12-13 05:35:28 +00:00
from freqtrade import DependencyException, constants
2018-06-05 21:53:49 +00:00
from freqtrade.arguments import Arguments, TimeRange
2018-12-13 05:35:28 +00:00
from freqtrade.data import history
from freqtrade.data.btanalysis import evaluate_result_multi
2019-03-16 16:50:57 +00:00
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.dataprovider import DataProvider
2018-11-04 12:23:59 +00:00
from freqtrade.optimize import get_timeframe
2018-07-04 07:31:35 +00:00
from freqtrade.optimize.backtesting import (Backtesting, setup_configuration,
start)
2018-12-25 13:35:48 +00:00
from freqtrade.state import RunMode
from freqtrade.strategy.default_strategy import DefaultStrategy
2018-12-13 05:35:28 +00:00
from freqtrade.strategy.interface import SellType
from freqtrade.tests.conftest import log_has, patch_exchange
def get_args(args) -> List[str]:
return Arguments(args, '').get_parsed_arg()
2017-12-16 02:39:47 +00:00
2018-01-28 07:38:41 +00:00
def trim_dictlist(dict_list, num):
2018-01-17 17:19:39 +00:00
new = {}
2018-01-28 07:38:41 +00:00
for pair, pair_data in dict_list.items():
2018-01-17 17:19:39 +00:00
new[pair] = pair_data[num:]
return new
def load_data_test(what):
timerange = TimeRange(None, 'line', 0, -101)
pair = history.load_tickerdata_file(None, ticker_interval='1m',
pair='UNITTEST/BTC', timerange=timerange)
datalen = len(pair)
base = 0.001
if what == 'raise':
data = [
[
pair[x][0], # Keep old dates
x * base, # But replace O,H,L,C
x * base + 0.0001,
x * base - 0.0001,
x * base,
pair[x][5], # Keep old volume
] for x in range(0, datalen)
]
if what == 'lower':
data = [
[
pair[x][0], # Keep old dates
1 - x * base, # But replace O,H,L,C
1 - x * base + 0.0001,
1 - x * base - 0.0001,
1 - x * base,
pair[x][5] # Keep old volume
] for x in range(0, datalen)
]
if what == 'sine':
hz = 0.1 # frequency
data = [
[
pair[x][0], # Keep old dates
math.sin(x * hz) / 1000 + base, # But replace O,H,L,C
math.sin(x * hz) / 1000 + base + 0.0001,
math.sin(x * hz) / 1000 + base - 0.0001,
math.sin(x * hz) / 1000 + base,
pair[x][5] # Keep old volume
] for x in range(0, datalen)
]
return {'UNITTEST/BTC': parse_ticker_dataframe(data, '1m', fill_missing=True)}
2018-04-21 22:19:11 +00:00
def simple_backtest(config, contour, num_results, mocker) -> None:
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
config['ticker_interval'] = '1m'
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(config)
data = load_data_test(contour)
processed = backtesting.strategy.tickerdata_to_dataframe(data)
2018-11-04 12:23:59 +00:00
min_date, max_date = get_timeframe(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
{
'stake_amount': config['stake_amount'],
'processed': processed,
'max_open_trades': 1,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
)
# results :: <class 'pandas.core.frame.DataFrame'>
assert len(results) == num_results
2018-06-17 20:29:57 +00:00
def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=False,
timerange=None, exchange=None):
2018-12-13 05:35:28 +00:00
tickerdata = history.load_tickerdata_file(datadir, 'UNITTEST/BTC', '1m', timerange=timerange)
pairdata = {'UNITTEST/BTC': parse_ticker_dataframe(tickerdata, '1m', fill_missing=True)}
return pairdata
# use for mock ccxt.fetch_ohlvc'
def _load_pair_as_ticks(pair, tickfreq):
ticks = history.load_tickerdata_file(None, ticker_interval=tickfreq, pair=pair)
ticks = ticks[-201:]
return ticks
# FIX: fixturize this?
2018-04-21 22:19:11 +00:00
def _make_backtest_conf(mocker, conf=None, pair='UNITTEST/BTC', record=None):
2018-12-15 19:14:13 +00:00
data = history.load_data(datadir=None, ticker_interval='1m', pairs=[pair])
data = trim_dictlist(data, -201)
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(conf)
processed = backtesting.strategy.tickerdata_to_dataframe(data)
2018-11-04 12:23:59 +00:00
min_date, max_date = get_timeframe(processed)
return {
'stake_amount': conf['stake_amount'],
'processed': processed,
'max_open_trades': 10,
'position_stacking': False,
'record': record,
'start_date': min_date,
'end_date': max_date,
}
def _trend(signals, buy_value, sell_value):
n = len(signals['low'])
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(signals['buy'])):
if random.random() > 0.5: # Both buy and sell signals at same timeframe
buy[i] = buy_value
sell[i] = sell_value
signals['buy'] = buy
signals['sell'] = sell
return signals
def _trend_alternate(dataframe=None, metadata=None):
signals = dataframe
low = signals['low']
n = len(low)
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(buy)):
if i % 2 == 0:
buy[i] = 1
else:
sell[i] = 1
signals['buy'] = buy
signals['sell'] = sell
return dataframe
# Unit tests
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting'
]
config = setup_configuration(get_args(args))
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
2018-06-02 08:32:05 +00:00
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' not in config
assert 'export' not in config
2018-12-25 13:35:48 +00:00
assert 'runmode' in config
assert config['runmode'] == RunMode.BACKTEST
2019-01-01 13:07:40 +00:00
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
2019-01-01 13:07:40 +00:00
mocker.patch('freqtrade.configuration.Configuration._create_datadir', lambda s, c, x: x)
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
'backtesting',
'--ticker-interval', '1m',
'--live',
'--enable-position-stacking',
2018-07-17 19:05:03 +00:00
'--disable-max-market-positions',
'--refresh-pairs-cached',
'--timerange', ':100',
2018-06-03 12:52:03 +00:00
'--export', '/bar/foo',
'--export-filename', 'foo_bar.json'
]
config = setup_configuration(get_args(args))
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
2018-12-25 13:35:48 +00:00
assert config['runmode'] == RunMode.BACKTEST
assert log_has(
2018-06-02 08:32:05 +00:00
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1m ...',
caplog.record_tuples
)
assert 'live' in config
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
2018-07-17 19:05:03 +00:00
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog.record_tuples)
assert log_has('max_open_trades set to unlimited ...', caplog.record_tuples)
assert 'refresh_pairs' in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' in config
assert log_has(
'Parameter --timerange detected: {} ...'.format(config['timerange']),
caplog.record_tuples
)
assert 'export' in config
assert log_has(
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
2018-06-03 12:52:03 +00:00
assert 'exportfilename' in config
assert log_has(
'Storing backtest results to {} ...'.format(config['exportfilename']),
caplog.record_tuples
)
2018-06-03 22:48:26 +00:00
def test_setup_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None:
default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
2018-06-03 22:48:26 +00:00
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
2018-06-03 22:48:26 +00:00
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting'
]
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
setup_configuration(get_args(args))
2018-04-21 22:19:11 +00:00
def test_start(mocker, fee, default_conf, caplog) -> None:
start_mock = MagicMock()
2018-06-17 20:29:57 +00:00
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting'
]
args = get_args(args)
start(args)
assert log_has(
'Starting freqtrade in Backtesting mode',
caplog.record_tuples
)
assert start_mock.call_count == 1
ORDER_TYPES = [
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
},
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': True
}]
@pytest.mark.parametrize("order_types", ORDER_TYPES)
def test_backtesting_init(mocker, default_conf, order_types) -> None:
"""
Check that stoploss_on_exchange is set to False while backtesting
since backtesting assumes a perfect stoploss anyway.
"""
default_conf["order_types"] = order_types
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
assert backtesting.config == default_conf
assert backtesting.ticker_interval == '5m'
assert callable(backtesting.strategy.tickerdata_to_dataframe)
2018-07-20 18:59:56 +00:00
assert callable(backtesting.advise_buy)
assert callable(backtesting.advise_sell)
assert isinstance(backtesting.strategy.dp, DataProvider)
get_fee.assert_called()
2018-06-23 04:58:25 +00:00
assert backtesting.fee == 0.5
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
def test_tickerdata_to_dataframe_bt(default_conf, mocker) -> None:
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2018-06-05 21:53:49 +00:00
timerange = TimeRange(None, 'line', 0, -100)
2018-12-13 05:35:28 +00:00
tick = history.load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', fill_missing=True)}
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
data = backtesting.strategy.tickerdata_to_dataframe(tickerlist)
assert len(data['UNITTEST/BTC']) == 102
# Load strategy to compare the result between Backtesting function and strategy are the same
strategy = DefaultStrategy(default_conf)
data2 = strategy.tickerdata_to_dataframe(tickerlist)
assert data['UNITTEST/BTC'].equals(data2['UNITTEST/BTC'])
2018-04-21 22:19:11 +00:00
def test_generate_text_table(default_conf, mocker):
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
default_conf['max_open_trades'] = 2
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
results = pd.DataFrame(
{
2018-06-10 11:22:24 +00:00
'pair': ['ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2],
2018-06-10 11:22:24 +00:00
'profit_abs': [0.2, 0.4],
'trade_duration': [10, 30],
'profit': [2, 0],
'loss': [0, 0]
}
)
result_str = (
'| pair | buy count | avg profit % | cum profit % | '
'tot profit BTC | tot profit % | avg duration | profit | loss |\n'
'|:--------|------------:|---------------:|---------------:|'
'-----------------:|---------------:|:---------------|---------:|-------:|\n'
'| ETH/BTC | 2 | 15.00 | 30.00 | '
'0.60000000 | 15.00 | 0:20:00 | 2 | 0 |\n'
'| TOTAL | 2 | 15.00 | 30.00 | '
'0.60000000 | 15.00 | 0:20:00 | 2 | 0 |'
)
assert backtesting._generate_text_table(data={'ETH/BTC': {}}, results=results) == result_str
2018-07-12 19:19:43 +00:00
def test_generate_text_table_sell_reason(default_conf, mocker):
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
results = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2, 0.3],
'profit_abs': [0.2, 0.4, 0.5],
'trade_duration': [10, 30, 10],
'profit': [2, 0, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
result_str = (
'| Sell Reason | Count |\n'
'|:--------------|--------:|\n'
'| roi | 2 |\n'
'| stop_loss | 1 |'
)
assert backtesting._generate_text_table_sell_reason(
data={'ETH/BTC': {}}, results=results) == result_str
2018-07-29 11:07:30 +00:00
def test_generate_text_table_strategyn(default_conf, mocker):
"""
Test Backtesting.generate_text_table_sell_reason() method
"""
patch_exchange(mocker)
default_conf['max_open_trades'] = 2
2018-07-29 11:07:30 +00:00
backtesting = Backtesting(default_conf)
results = {}
results['ETH/BTC'] = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2, 0.3],
'profit_abs': [0.2, 0.4, 0.5],
'trade_duration': [10, 30, 10],
'profit': [2, 0, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
results['LTC/BTC'] = pd.DataFrame(
{
'pair': ['LTC/BTC', 'LTC/BTC', 'LTC/BTC'],
'profit_percent': [0.4, 0.2, 0.3],
'profit_abs': [0.4, 0.4, 0.5],
'trade_duration': [15, 30, 15],
'profit': [4, 1, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
result_str = (
'| Strategy | buy count | avg profit % | cum profit % '
'| tot profit BTC | tot profit % | avg duration | profit | loss |\n'
2018-07-29 11:07:30 +00:00
'|:-----------|------------:|---------------:|---------------:'
'|-----------------:|---------------:|:---------------|---------:|-------:|\n'
2018-07-29 11:07:30 +00:00
'| ETH/BTC | 3 | 20.00 | 60.00 '
'| 1.10000000 | 30.00 | 0:17:00 | 3 | 0 |\n'
2018-07-29 11:07:30 +00:00
'| LTC/BTC | 3 | 30.00 | 90.00 '
'| 1.30000000 | 45.00 | 0:20:00 | 3 | 0 |'
2018-07-29 11:07:30 +00:00
)
print(backtesting._generate_text_table_strategy(all_results=results))
assert backtesting._generate_text_table_strategy(all_results=results) == result_str
def test_backtesting_start(default_conf, mocker, caplog) -> None:
def get_timeframe(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
2018-12-13 05:35:28 +00:00
mocker.patch('freqtrade.data.history.load_data', mocked_load_data)
mocker.patch('freqtrade.optimize.get_timeframe', get_timeframe)
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.optimize.backtesting.Backtesting',
backtest=MagicMock(),
_generate_text_table=MagicMock(return_value='1'),
)
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
2018-10-16 18:09:12 +00:00
default_conf['ticker_interval'] = '1m'
default_conf['live'] = False
default_conf['datadir'] = None
default_conf['export'] = None
default_conf['timerange'] = '-100'
backtesting = Backtesting(default_conf)
backtesting.start()
# check the logs, that will contain the backtest result
exists = [
'Using local backtesting data (using whitelist in given config) ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Measuring data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:59:00+00:00 (0 days)..'
]
for line in exists:
assert log_has(line, caplog.record_tuples)
def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
def get_timeframe(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
2018-12-13 05:35:28 +00:00
mocker.patch('freqtrade.data.history.load_data', MagicMock(return_value={}))
mocker.patch('freqtrade.optimize.get_timeframe', get_timeframe)
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.optimize.backtesting.Backtesting',
backtest=MagicMock(),
_generate_text_table=MagicMock(return_value='1'),
)
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
default_conf['ticker_interval'] = "1m"
default_conf['live'] = False
default_conf['datadir'] = None
default_conf['export'] = None
default_conf['timerange'] = '20180101-20180102'
backtesting = Backtesting(default_conf)
backtesting.start()
# check the logs, that will contain the backtest result
2018-06-11 19:02:24 +00:00
assert log_has('No data found. Terminating.', caplog.record_tuples)
2018-04-21 22:19:11 +00:00
def test_backtest(default_conf, fee, mocker) -> None:
2018-06-17 20:29:57 +00:00
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
pair = 'UNITTEST/BTC'
timerange = TimeRange(None, 'line', 0, -201)
2018-12-15 19:14:13 +00:00
data = history.load_data(datadir=None, ticker_interval='5m', pairs=['UNITTEST/BTC'],
timerange=timerange)
data_processed = backtesting.strategy.tickerdata_to_dataframe(data)
2018-11-04 12:23:59 +00:00
min_date, max_date = get_timeframe(data_processed)
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 10,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
)
assert not results.empty
assert len(results) == 2
expected = pd.DataFrame(
{'pair': [pair, pair],
'profit_percent': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'open_time': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
),
'close_time': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime,
Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True),
'open_index': [78, 184],
'close_index': [125, 192],
'trade_duration': [235, 40],
'open_at_end': [False, False],
2018-07-08 18:18:34 +00:00
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
2018-07-11 18:03:40 +00:00
'sell_reason': [SellType.ROI, SellType.ROI]
})
pd.testing.assert_frame_equal(results, expected)
data_pair = data_processed[pair]
for _, t in results.iterrows():
ln = data_pair.loc[data_pair["date"] == t["open_time"]]
2018-07-08 18:18:34 +00:00
# Check open trade rate alignes to open rate
assert ln is not None
2018-07-08 18:18:34 +00:00
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
# check close trade rate alignes to close rate or is between high and low
ln = data_pair.loc[data_pair["date"] == t["close_time"]]
assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
round(ln.iloc[0]["low"], 6) < round(
t["close_rate"], 6) < round(ln.iloc[0]["high"], 6))
2018-04-21 22:19:11 +00:00
def test_backtest_1min_ticker_interval(default_conf, fee, mocker) -> None:
2018-06-17 20:29:57 +00:00
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
# Run a backtesting for an exiting 1min ticker_interval
timerange = TimeRange(None, 'line', 0, -200)
2018-12-15 19:14:13 +00:00
data = history.load_data(datadir=None, ticker_interval='1m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.tickerdata_to_dataframe(data)
2018-11-04 12:23:59 +00:00
min_date, max_date = get_timeframe(processed)
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': processed,
'max_open_trades': 1,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
)
assert not results.empty
assert len(results) == 1
2018-04-21 22:19:11 +00:00
def test_processed(default_conf, mocker) -> None:
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
dict_of_tickerrows = load_data_test('raise')
dataframes = backtesting.strategy.tickerdata_to_dataframe(dict_of_tickerrows)
dataframe = dataframes['UNITTEST/BTC']
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
for col in ['close', 'high', 'low', 'open', 'date',
'ema50', 'ao', 'macd', 'plus_dm']:
assert col in cols
2018-04-21 22:19:11 +00:00
def test_backtest_pricecontours(default_conf, fee, mocker) -> None:
2018-06-17 20:29:57 +00:00
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
tests = [['raise', 19], ['lower', 0], ['sine', 18]]
# We need to enable sell-signal - otherwise it sells on ROI!!
default_conf['experimental'] = {"use_sell_signal": True}
for [contour, numres] in tests:
2018-04-21 22:19:11 +00:00
simple_backtest(default_conf, contour, numres, mocker)
2018-04-21 22:19:11 +00:00
def test_backtest_clash_buy_sell(mocker, default_conf):
# Override the default buy trend function in our default_strategy
2018-06-26 05:08:09 +00:00
def fun(dataframe=None, pair=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
2018-04-21 22:19:11 +00:00
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
backtesting = Backtesting(default_conf)
2018-07-20 18:59:56 +00:00
backtesting.advise_buy = fun # Override
backtesting.advise_sell = fun # Override
2018-04-21 22:19:11 +00:00
results = backtesting.backtest(backtest_conf)
assert results.empty
2018-04-21 22:19:11 +00:00
def test_backtest_only_sell(mocker, default_conf):
# Override the default buy trend function in our default_strategy
2018-06-26 05:08:09 +00:00
def fun(dataframe=None, pair=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
2018-04-21 22:19:11 +00:00
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
backtesting = Backtesting(default_conf)
2018-07-20 18:59:56 +00:00
backtesting.advise_buy = fun # Override
backtesting.advise_sell = fun # Override
2018-04-21 22:19:11 +00:00
results = backtesting.backtest(backtest_conf)
assert results.empty
2018-04-21 22:19:11 +00:00
def test_backtest_alternate_buy_sell(default_conf, fee, mocker):
2018-06-17 20:29:57 +00:00
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
2018-11-15 19:02:48 +00:00
mocker.patch('freqtrade.optimize.backtesting.file_dump_json', MagicMock())
2018-04-21 22:19:11 +00:00
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, pair='UNITTEST/BTC')
# We need to enable sell-signal - otherwise it sells on ROI!!
default_conf['experimental'] = {"use_sell_signal": True}
default_conf['ticker_interval'] = '1m'
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
2018-07-20 18:59:56 +00:00
backtesting.advise_buy = _trend_alternate # Override
backtesting.advise_sell = _trend_alternate # Override
2018-04-21 22:19:11 +00:00
results = backtesting.backtest(backtest_conf)
backtesting._store_backtest_result("test_.json", results)
# 200 candles in backtest data
# won't buy on first (shifted by 1)
# 100 buys signals
assert len(results) == 100
# One trade was force-closed at the end
assert len(results.loc[results.open_at_end]) == 0
2018-11-05 19:03:04 +00:00
def test_backtest_multi_pair(default_conf, fee, mocker):
def _trend_alternate_hold(dataframe=None, metadata=None):
"""
Buy every 8th candle - sell every other 8th -2 (hold on to pairs a bit)
"""
multi = 8
dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0)
dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
if metadata['pair'] in('ETH/BTC', 'LTC/BTC'):
dataframe['buy'] = dataframe['buy'].shift(-4)
dataframe['sell'] = dataframe['sell'].shift(-4)
return dataframe
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
2018-11-06 19:37:59 +00:00
patch_exchange(mocker)
2018-11-05 19:03:04 +00:00
pairs = ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC', 'NXT/BTC']
2018-12-15 19:14:13 +00:00
data = history.load_data(datadir=None, ticker_interval='5m', pairs=pairs)
2018-11-05 19:03:04 +00:00
data = trim_dictlist(data, -500)
# We need to enable sell-signal - otherwise it sells on ROI!!
default_conf['experimental'] = {"use_sell_signal": True}
default_conf['ticker_interval'] = '5m'
backtesting = Backtesting(default_conf)
backtesting.advise_buy = _trend_alternate_hold # Override
backtesting.advise_sell = _trend_alternate_hold # Override
data_processed = backtesting.strategy.tickerdata_to_dataframe(data)
min_date, max_date = get_timeframe(data_processed)
backtest_conf = {
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 3,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
results = backtesting.backtest(backtest_conf)
# Make sure we have parallel trades
assert len(evaluate_result_multi(results, '5min', 2)) > 0
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results, '5min', 3)) == 0
backtest_conf = {
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 1,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
results = backtesting.backtest(backtest_conf)
assert len(evaluate_result_multi(results, '5min', 1)) == 0
2018-04-21 22:19:11 +00:00
def test_backtest_record(default_conf, fee, mocker):
names = []
records = []
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2018-06-17 20:29:57 +00:00
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch(
'freqtrade.optimize.backtesting.file_dump_json',
new=lambda n, r: (names.append(n), records.append(r))
)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
results = pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
"UNITTEST/BTC", "UNITTEST/BTC"],
"profit_percent": [0.003312, 0.010801, 0.013803, 0.002780],
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
"open_time": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
Arrow(2017, 11, 14, 21, 36, 00).datetime,
Arrow(2017, 11, 14, 22, 12, 00).datetime,
Arrow(2017, 11, 14, 22, 44, 00).datetime],
"close_time": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
"open_index": [1, 119, 153, 185],
"close_index": [118, 151, 184, 199],
"trade_duration": [123, 34, 31, 14],
2018-07-11 18:32:56 +00:00
"open_at_end": [False, False, False, True],
"sell_reason": [SellType.ROI, SellType.STOP_LOSS,
SellType.ROI, SellType.FORCE_SELL]
})
backtesting._store_backtest_result("backtest-result.json", results)
2018-06-10 11:25:52 +00:00
assert len(results) == 4
# Assert file_dump_json was only called once
assert names == ['backtest-result.json']
records = records[0]
# Ensure records are of correct type
2018-06-10 11:25:52 +00:00
assert len(records) == 4
2018-07-28 20:00:12 +00:00
# reset test to test with strategy name
names = []
records = []
backtesting._store_backtest_result("backtest-result.json", results, "DefStrat")
assert len(results) == 4
# Assert file_dump_json was only called once
assert names == ['backtest-result-DefStrat.json']
records = records[0]
# Ensure records are of correct type
assert len(records) == 4
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
# Below follows just a typecheck of the schema/type of trade-records
oix = None
for (pair, profit, date_buy, date_sell, buy_index, dur,
2018-07-11 18:32:56 +00:00
openr, closer, open_at_end, sell_reason) in records:
assert pair == 'UNITTEST/BTC'
assert isinstance(profit, float)
# FIX: buy/sell should be converted to ints
assert isinstance(date_buy, float)
assert isinstance(date_sell, float)
assert isinstance(openr, float)
assert isinstance(closer, float)
assert isinstance(open_at_end, bool)
2018-07-11 18:32:56 +00:00
assert isinstance(sell_reason, str)
isinstance(buy_index, pd._libs.tslib.Timestamp)
if oix:
assert buy_index > oix
oix = buy_index
assert dur > 0
2018-04-21 22:19:11 +00:00
def test_backtest_start_live(default_conf, mocker, caplog):
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
async def load_pairs(pair, timeframe, since):
return _load_pair_as_ticks(pair, timeframe)
api_mock = MagicMock()
api_mock.fetch_ohlcv = load_pairs
patch_exchange(mocker, api_mock)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', MagicMock())
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
2018-06-10 17:46:52 +00:00
'--datadir', 'freqtrade/tests/testdata',
'backtesting',
'--ticker-interval', '1m',
'--live',
2018-06-10 17:46:52 +00:00
'--timerange', '-100',
2018-07-17 19:05:03 +00:00
'--enable-position-stacking',
'--disable-max-market-positions'
]
args = get_args(args)
start(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ...',
'Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
2018-07-17 19:05:03 +00:00
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
2018-06-10 17:46:52 +00:00
'Parameter --timerange detected: -100 ...',
2018-06-02 08:32:05 +00:00
'Using data folder: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...'
]
for line in exists:
2018-06-10 17:46:52 +00:00
assert log_has(line, caplog.record_tuples)
2018-07-28 05:55:59 +00:00
def test_backtest_start_multi_strat(default_conf, mocker, caplog):
2018-07-31 19:08:03 +00:00
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
async def load_pairs(pair, timeframe, since):
return _load_pair_as_ticks(pair, timeframe)
api_mock = MagicMock()
api_mock.fetch_ohlcv = load_pairs
patch_exchange(mocker, api_mock)
2018-07-28 05:55:59 +00:00
backtestmock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
gen_table_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', gen_table_mock)
2018-07-29 11:07:30 +00:00
gen_strattable_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table_strategy',
gen_strattable_mock)
2018-07-28 05:55:59 +00:00
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
2018-07-31 19:08:03 +00:00
read_data=json.dumps(default_conf)
2018-07-28 05:55:59 +00:00
))
args = [
'--config', 'config.json',
'--datadir', 'freqtrade/tests/testdata',
'backtesting',
'--ticker-interval', '1m',
'--live',
'--timerange', '-100',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategy',
]
args = get_args(args)
start(args)
# 2 backtests, 4 tables
assert backtestmock.call_count == 2
assert gen_table_mock.call_count == 4
2018-07-29 11:07:30 +00:00
assert gen_strattable_mock.call_count == 1
2018-07-28 05:55:59 +00:00
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ...',
'Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: -100 ...',
'Using data folder: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
2018-07-28 05:55:59 +00:00
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategy',
]
for line in exists:
assert log_has(line, caplog.record_tuples)