2020-03-15 14:17:35 +00:00
|
|
|
import logging
|
2020-01-02 06:26:43 +00:00
|
|
|
from datetime import timedelta
|
2020-03-15 14:17:35 +00:00
|
|
|
from pathlib import Path
|
2020-05-27 17:17:15 +00:00
|
|
|
from typing import Any, Dict, List
|
2020-01-02 06:26:43 +00:00
|
|
|
|
|
|
|
from pandas import DataFrame
|
|
|
|
from tabulate import tabulate
|
|
|
|
|
2020-03-15 14:17:35 +00:00
|
|
|
from freqtrade.misc import file_dump_json
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2020-03-15 14:36:23 +00:00
|
|
|
def store_backtest_result(recordfilename: Path, all_results: Dict[str, DataFrame]) -> None:
|
2020-03-15 14:38:26 +00:00
|
|
|
"""
|
|
|
|
Stores backtest results to file (one file per strategy)
|
|
|
|
:param recordfilename: Destination filename
|
|
|
|
:param all_results: Dict of Dataframes, one results dataframe per strategy
|
|
|
|
"""
|
2020-03-15 14:36:23 +00:00
|
|
|
for strategy, results in all_results.items():
|
|
|
|
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
|
|
|
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
|
|
|
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
|
|
|
for index, t in results.iterrows()]
|
2020-03-15 14:17:35 +00:00
|
|
|
|
2020-03-15 14:36:23 +00:00
|
|
|
if records:
|
2020-04-02 15:29:18 +00:00
|
|
|
filename = recordfilename
|
2020-03-15 14:36:23 +00:00
|
|
|
if len(all_results) > 1:
|
|
|
|
# Inject strategy to filename
|
2020-04-02 15:29:18 +00:00
|
|
|
filename = Path.joinpath(
|
2020-03-15 14:36:23 +00:00
|
|
|
recordfilename.parent,
|
|
|
|
f'{recordfilename.stem}-{strategy}').with_suffix(recordfilename.suffix)
|
2020-04-02 15:29:18 +00:00
|
|
|
logger.info(f'Dumping backtest results to {filename}')
|
|
|
|
file_dump_json(filename, records)
|
2020-03-15 14:17:35 +00:00
|
|
|
|
2020-01-02 06:26:43 +00:00
|
|
|
|
2020-05-25 17:18:53 +00:00
|
|
|
def _get_line_floatfmt() -> List[str]:
|
|
|
|
"""
|
|
|
|
Generate floatformat (goes in line with _generate_result_line())
|
|
|
|
"""
|
|
|
|
return ['s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', 'd', 'd', 'd']
|
|
|
|
|
|
|
|
|
2020-05-25 04:44:51 +00:00
|
|
|
def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
|
2020-01-02 06:26:43 +00:00
|
|
|
"""
|
2020-05-25 04:44:51 +00:00
|
|
|
Generate header lines (goes in line with _generate_result_line())
|
|
|
|
"""
|
|
|
|
return [first_column, 'Buys', 'Avg Profit %', 'Cum Profit %',
|
|
|
|
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
|
|
|
'Wins', 'Draws', 'Losses']
|
|
|
|
|
|
|
|
|
2020-05-25 17:18:53 +00:00
|
|
|
def _generate_result_line(result: DataFrame, max_open_trades: int, first_column: str) -> Dict:
|
|
|
|
"""
|
|
|
|
Generate one result dict, with "first_column" as key.
|
|
|
|
"""
|
|
|
|
return {
|
|
|
|
'key': first_column,
|
|
|
|
'trades': len(result.index),
|
|
|
|
'profit_mean': result.profit_percent.mean(),
|
|
|
|
'profit_mean_pct': result.profit_percent.mean() * 100.0,
|
2020-05-25 17:50:09 +00:00
|
|
|
'profit_sum': result.profit_percent.sum(),
|
2020-05-25 17:18:53 +00:00
|
|
|
'profit_sum_pct': result.profit_percent.sum() * 100.0,
|
|
|
|
'profit_total_abs': result.profit_abs.sum(),
|
|
|
|
'profit_total_pct': result.profit_percent.sum() * 100.0 / max_open_trades,
|
|
|
|
'duration_avg': str(timedelta(
|
|
|
|
minutes=round(result.trade_duration.mean()))
|
|
|
|
) if not result.empty else '0:00',
|
|
|
|
# 'duration_max': str(timedelta(
|
|
|
|
# minutes=round(result.trade_duration.max()))
|
|
|
|
# ) if not result.empty else '0:00',
|
|
|
|
# 'duration_min': str(timedelta(
|
|
|
|
# minutes=round(result.trade_duration.min()))
|
|
|
|
# ) if not result.empty else '0:00',
|
|
|
|
'wins': len(result[result.profit_abs > 0]),
|
|
|
|
'draws': len(result[result.profit_abs == 0]),
|
|
|
|
'losses': len(result[result.profit_abs < 0]),
|
|
|
|
}
|
2020-05-25 04:44:51 +00:00
|
|
|
|
|
|
|
|
2020-05-25 18:46:31 +00:00
|
|
|
def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
|
2020-05-25 17:50:09 +00:00
|
|
|
results: DataFrame, skip_nan: bool = False) -> List[Dict]:
|
2020-05-25 04:44:51 +00:00
|
|
|
"""
|
|
|
|
Generates and returns a list for the given backtest data and the results dataframe
|
2020-01-02 08:37:54 +00:00
|
|
|
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
|
|
|
|
:param stake_currency: stake-currency - used to correctly name headers
|
|
|
|
:param max_open_trades: Maximum allowed open trades
|
|
|
|
:param results: Dataframe containing the backtest results
|
|
|
|
:param skip_nan: Print "left open" open trades
|
2020-05-25 17:55:02 +00:00
|
|
|
:return: List of Dicts containing the metrics per pair
|
2020-01-02 06:26:43 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
tabular_data = []
|
2020-05-25 17:18:53 +00:00
|
|
|
|
2020-01-02 06:26:43 +00:00
|
|
|
for pair in data:
|
|
|
|
result = results[results.pair == pair]
|
|
|
|
if skip_nan and result.profit_abs.isnull().all():
|
|
|
|
continue
|
|
|
|
|
2020-05-25 04:44:51 +00:00
|
|
|
tabular_data.append(_generate_result_line(result, max_open_trades, pair))
|
2020-01-02 06:26:43 +00:00
|
|
|
|
|
|
|
# Append Total
|
2020-05-25 04:44:51 +00:00
|
|
|
tabular_data.append(_generate_result_line(results, max_open_trades, 'TOTAL'))
|
2020-05-25 17:18:53 +00:00
|
|
|
return tabular_data
|
2020-05-25 04:44:51 +00:00
|
|
|
|
|
|
|
|
2020-05-25 17:34:46 +00:00
|
|
|
def generate_text_table(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
2020-05-25 04:44:51 +00:00
|
|
|
"""
|
|
|
|
Generates and returns a text table for the given backtest data and the results dataframe
|
2020-05-25 17:55:02 +00:00
|
|
|
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
2020-05-25 04:44:51 +00:00
|
|
|
:param stake_currency: stake-currency - used to correctly name headers
|
|
|
|
:return: pretty printed table with tabulate as string
|
|
|
|
"""
|
|
|
|
|
2020-05-25 17:18:53 +00:00
|
|
|
headers = _get_line_header('Pair', stake_currency)
|
|
|
|
floatfmt = _get_line_floatfmt()
|
|
|
|
output = [[
|
|
|
|
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
|
|
|
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
|
|
|
] for t in pair_results]
|
2020-01-02 06:26:43 +00:00
|
|
|
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
2020-05-25 17:18:53 +00:00
|
|
|
return tabulate(output, headers=headers,
|
2020-02-27 12:28:28 +00:00
|
|
|
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
2020-01-02 06:28:30 +00:00
|
|
|
|
|
|
|
|
2020-05-25 17:55:02 +00:00
|
|
|
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
|
2020-01-02 06:28:30 +00:00
|
|
|
"""
|
|
|
|
Generate small table outlining Backtest results
|
2020-03-15 14:04:48 +00:00
|
|
|
:param max_open_trades: Max_open_trades parameter
|
2020-05-25 05:02:24 +00:00
|
|
|
:param results: Dataframe containing the backtest result for one strategy
|
|
|
|
:return: List of Dicts containing the metrics per Sell reason
|
2020-01-02 06:28:30 +00:00
|
|
|
"""
|
|
|
|
tabular_data = []
|
2020-05-25 05:02:24 +00:00
|
|
|
|
2020-01-02 06:28:30 +00:00
|
|
|
for reason, count in results['sell_reason'].value_counts().iteritems():
|
2020-01-09 05:46:39 +00:00
|
|
|
result = results.loc[results['sell_reason'] == reason]
|
2020-05-25 05:02:24 +00:00
|
|
|
|
|
|
|
profit_mean = result['profit_percent'].mean()
|
|
|
|
profit_sum = result["profit_percent"].sum()
|
2020-01-31 19:41:51 +00:00
|
|
|
profit_percent_tot = round(result['profit_percent'].sum() * 100.0 / max_open_trades, 2)
|
2020-05-25 05:02:24 +00:00
|
|
|
|
2020-01-31 03:39:18 +00:00
|
|
|
tabular_data.append(
|
2020-05-25 05:02:24 +00:00
|
|
|
{
|
|
|
|
'sell_reason': reason.value,
|
|
|
|
'trades': count,
|
|
|
|
'wins': len(result[result['profit_abs'] > 0]),
|
|
|
|
'draws': len(result[result['profit_abs'] == 0]),
|
|
|
|
'losses': len(result[result['profit_abs'] < 0]),
|
|
|
|
'profit_mean': profit_mean,
|
|
|
|
'profit_mean_pct': round(profit_mean * 100, 2),
|
|
|
|
'profit_sum': profit_sum,
|
|
|
|
'profit_sum_pct': round(profit_sum * 100, 2),
|
|
|
|
'profit_total_abs': result['profit_abs'].sum(),
|
|
|
|
'profit_pct_total': profit_percent_tot,
|
|
|
|
}
|
2020-01-31 03:39:18 +00:00
|
|
|
)
|
2020-05-25 05:02:24 +00:00
|
|
|
return tabular_data
|
2020-05-25 04:44:51 +00:00
|
|
|
|
|
|
|
|
2020-05-25 17:50:09 +00:00
|
|
|
def generate_text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]],
|
|
|
|
stake_currency: str) -> str:
|
2020-05-25 04:44:51 +00:00
|
|
|
"""
|
|
|
|
Generate small table outlining Backtest results
|
2020-05-25 17:55:02 +00:00
|
|
|
:param sell_reason_stats: Sell reason metrics
|
2020-05-25 04:44:51 +00:00
|
|
|
:param stake_currency: Stakecurrency used
|
|
|
|
:return: pretty printed table with tabulate as string
|
|
|
|
"""
|
2020-05-25 05:02:24 +00:00
|
|
|
headers = [
|
|
|
|
'Sell Reason',
|
|
|
|
'Sells',
|
|
|
|
'Wins',
|
|
|
|
'Draws',
|
|
|
|
'Losses',
|
|
|
|
'Avg Profit %',
|
|
|
|
'Cum Profit %',
|
|
|
|
f'Tot Profit {stake_currency}',
|
|
|
|
'Tot Profit %',
|
|
|
|
]
|
2020-05-25 05:08:15 +00:00
|
|
|
|
2020-05-25 05:02:24 +00:00
|
|
|
output = [[
|
|
|
|
t['sell_reason'], t['trades'], t['wins'], t['draws'], t['losses'],
|
|
|
|
t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_pct_total'],
|
|
|
|
] for t in sell_reason_stats]
|
|
|
|
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
2020-01-02 06:32:12 +00:00
|
|
|
|
|
|
|
|
2020-05-25 18:46:31 +00:00
|
|
|
def generate_strategy_metrics(stake_currency: str, max_open_trades: int,
|
2020-05-25 17:55:02 +00:00
|
|
|
all_results: Dict) -> List[Dict]:
|
2020-05-25 04:44:51 +00:00
|
|
|
"""
|
|
|
|
Generate summary per strategy
|
|
|
|
:param stake_currency: stake-currency - used to correctly name headers
|
|
|
|
:param max_open_trades: Maximum allowed open trades used for backtest
|
|
|
|
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
2020-05-25 17:55:02 +00:00
|
|
|
:return: List of Dicts containing the metrics per Strategy
|
2020-05-25 04:44:51 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
tabular_data = []
|
|
|
|
for strategy, results in all_results.items():
|
|
|
|
tabular_data.append(_generate_result_line(results, max_open_trades, strategy))
|
2020-05-25 17:18:53 +00:00
|
|
|
return tabular_data
|
2020-05-25 04:44:51 +00:00
|
|
|
|
|
|
|
|
2020-05-25 17:55:02 +00:00
|
|
|
def generate_text_table_strategy(strategy_results, stake_currency: str) -> str:
|
2020-01-02 06:32:12 +00:00
|
|
|
"""
|
|
|
|
Generate summary table per strategy
|
2020-01-02 08:37:54 +00:00
|
|
|
:param stake_currency: stake-currency - used to correctly name headers
|
|
|
|
:param max_open_trades: Maximum allowed open trades used for backtest
|
|
|
|
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
|
|
|
:return: pretty printed table with tabulate as string
|
2020-01-02 06:32:12 +00:00
|
|
|
"""
|
2020-05-25 17:18:53 +00:00
|
|
|
floatfmt = _get_line_floatfmt()
|
|
|
|
headers = _get_line_header('Strategy', stake_currency)
|
2020-01-02 06:32:12 +00:00
|
|
|
|
2020-05-25 17:18:53 +00:00
|
|
|
output = [[
|
|
|
|
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
|
|
|
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
|
|
|
] for t in strategy_results]
|
2020-01-02 06:32:12 +00:00
|
|
|
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
2020-05-25 17:18:53 +00:00
|
|
|
return tabulate(output, headers=headers,
|
2020-02-27 12:28:28 +00:00
|
|
|
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
2020-01-09 05:52:34 +00:00
|
|
|
|
|
|
|
|
|
|
|
def generate_edge_table(results: dict) -> str:
|
|
|
|
|
2020-05-25 04:44:51 +00:00
|
|
|
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
|
2020-01-09 05:52:34 +00:00
|
|
|
tabular_data = []
|
2020-02-07 02:51:50 +00:00
|
|
|
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
|
|
|
|
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
|
|
|
|
'Average Duration (min)']
|
2020-01-09 05:52:34 +00:00
|
|
|
|
|
|
|
for result in results.items():
|
|
|
|
if result[1].nb_trades > 0:
|
|
|
|
tabular_data.append([
|
|
|
|
result[0],
|
|
|
|
result[1].stoploss,
|
|
|
|
result[1].winrate,
|
|
|
|
result[1].risk_reward_ratio,
|
|
|
|
result[1].required_risk_reward,
|
|
|
|
result[1].expectancy,
|
|
|
|
result[1].nb_trades,
|
|
|
|
round(result[1].avg_trade_duration)
|
|
|
|
])
|
|
|
|
|
|
|
|
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
|
|
|
return tabulate(tabular_data, headers=headers,
|
2020-02-27 12:28:28 +00:00
|
|
|
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
2020-03-15 14:17:53 +00:00
|
|
|
|
|
|
|
|
|
|
|
def show_backtest_results(config: Dict, btdata: Dict[str, DataFrame],
|
|
|
|
all_results: Dict[str, DataFrame]):
|
2020-05-25 18:47:48 +00:00
|
|
|
stake_currency = config['stake_currency']
|
|
|
|
max_open_trades = config['max_open_trades']
|
|
|
|
|
2020-03-15 14:17:53 +00:00
|
|
|
for strategy, results in all_results.items():
|
2020-05-25 18:47:48 +00:00
|
|
|
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
|
|
|
max_open_trades=max_open_trades,
|
2020-05-25 17:50:09 +00:00
|
|
|
results=results, skip_nan=False)
|
2020-05-25 18:47:48 +00:00
|
|
|
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
|
2020-05-25 18:22:22 +00:00
|
|
|
results=results)
|
2020-05-25 18:47:48 +00:00
|
|
|
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
|
|
|
max_open_trades=max_open_trades,
|
2020-05-25 18:22:22 +00:00
|
|
|
results=results.loc[results['open_at_end']],
|
|
|
|
skip_nan=True)
|
|
|
|
# Print results
|
|
|
|
print(f"Result for strategy {strategy}")
|
2020-05-25 18:47:48 +00:00
|
|
|
table = generate_text_table(pair_results, stake_currency=stake_currency)
|
2020-03-15 14:17:53 +00:00
|
|
|
if isinstance(table, str):
|
|
|
|
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
|
|
|
print(table)
|
|
|
|
|
2020-05-25 05:08:15 +00:00
|
|
|
table = generate_text_table_sell_reason(sell_reason_stats=sell_reason_stats,
|
2020-05-25 18:47:48 +00:00
|
|
|
stake_currency=stake_currency,
|
2020-05-25 05:08:15 +00:00
|
|
|
)
|
2020-03-15 14:17:53 +00:00
|
|
|
if isinstance(table, str):
|
|
|
|
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
|
|
|
|
print(table)
|
|
|
|
|
2020-05-25 18:47:48 +00:00
|
|
|
table = generate_text_table(left_open_results, stake_currency=stake_currency)
|
2020-03-15 14:17:53 +00:00
|
|
|
if isinstance(table, str):
|
|
|
|
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
|
|
|
print(table)
|
|
|
|
if isinstance(table, str):
|
|
|
|
print('=' * len(table.splitlines()[0]))
|
|
|
|
print()
|
2020-05-25 04:44:51 +00:00
|
|
|
|
2020-03-15 14:17:53 +00:00
|
|
|
if len(all_results) > 1:
|
|
|
|
# Print Strategy summary table
|
2020-05-25 18:47:48 +00:00
|
|
|
strategy_results = generate_strategy_metrics(stake_currency=stake_currency,
|
|
|
|
max_open_trades=max_open_trades,
|
2020-05-25 17:55:02 +00:00
|
|
|
all_results=all_results)
|
|
|
|
|
2020-05-25 18:47:48 +00:00
|
|
|
table = generate_text_table_strategy(strategy_results, stake_currency)
|
2020-03-15 14:17:53 +00:00
|
|
|
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
|
|
|
print(table)
|
|
|
|
print('=' * len(table.splitlines()[0]))
|
|
|
|
print('\nFor more details, please look at the detail tables above')
|