146 lines
5.7 KiB
Python
146 lines
5.7 KiB
Python
|
import logging
|
||
|
from typing import Any, Dict, Tuple
|
||
|
|
||
|
from lightgbm import LGBMRegressor
|
||
|
from pandas import DataFrame
|
||
|
|
||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||
|
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class LightGBMPredictionModel(IFreqaiModel):
|
||
|
"""
|
||
|
User created prediction model. The class needs to override three necessary
|
||
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||
|
"""
|
||
|
|
||
|
def return_values(self, dataframe: DataFrame, dh: FreqaiDataKitchen) -> DataFrame:
|
||
|
|
||
|
dataframe["prediction"] = dh.full_predictions
|
||
|
dataframe["do_predict"] = dh.full_do_predict
|
||
|
dataframe["target_mean"] = dh.full_target_mean
|
||
|
dataframe["target_std"] = dh.full_target_std
|
||
|
if self.freqai_info.get('feature_parameters', {}).get('DI_threshold', 0) > 0:
|
||
|
dataframe["DI"] = dh.full_DI_values
|
||
|
|
||
|
return dataframe
|
||
|
|
||
|
def make_labels(self, dataframe: DataFrame, dh: FreqaiDataKitchen) -> DataFrame:
|
||
|
"""
|
||
|
User defines the labels here (target values).
|
||
|
:params:
|
||
|
:dataframe: the full dataframe for the present training period
|
||
|
"""
|
||
|
|
||
|
dataframe["s"] = (
|
||
|
dataframe["close"]
|
||
|
.shift(-self.feature_parameters["period"])
|
||
|
.rolling(self.feature_parameters["period"])
|
||
|
.mean()
|
||
|
/ dataframe["close"]
|
||
|
- 1
|
||
|
)
|
||
|
|
||
|
return dataframe["s"]
|
||
|
|
||
|
def train(self, unfiltered_dataframe: DataFrame,
|
||
|
pair: str, dh: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
|
||
|
"""
|
||
|
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
|
||
|
for storing, saving, loading, and analyzing the data.
|
||
|
:params:
|
||
|
:unfiltered_dataframe: Full dataframe for the current training period
|
||
|
:metadata: pair metadata from strategy.
|
||
|
:returns:
|
||
|
:model: Trained model which can be used to inference (self.predict)
|
||
|
"""
|
||
|
|
||
|
logger.info('--------------------Starting training '
|
||
|
f'{pair} --------------------')
|
||
|
|
||
|
# create the full feature list based on user config info
|
||
|
dh.training_features_list = dh.find_features(unfiltered_dataframe)
|
||
|
unfiltered_labels = self.make_labels(unfiltered_dataframe, dh)
|
||
|
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||
|
features_filtered, labels_filtered = dh.filter_features(
|
||
|
unfiltered_dataframe,
|
||
|
dh.training_features_list,
|
||
|
unfiltered_labels,
|
||
|
training_filter=True,
|
||
|
)
|
||
|
|
||
|
# split data into train/test data.
|
||
|
data_dictionary = dh.make_train_test_datasets(features_filtered, labels_filtered)
|
||
|
dh.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
|
||
|
# normalize all data based on train_dataset only
|
||
|
data_dictionary = dh.normalize_data(data_dictionary)
|
||
|
|
||
|
# optional additional data cleaning/analysis
|
||
|
self.data_cleaning_train(dh)
|
||
|
|
||
|
logger.info(f'Training model on {len(dh.data_dictionary["train_features"].columns)}'
|
||
|
' features')
|
||
|
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||
|
|
||
|
model = self.fit(data_dictionary)
|
||
|
|
||
|
logger.info(f'--------------------done training {pair}--------------------')
|
||
|
|
||
|
return model
|
||
|
|
||
|
def fit(self, data_dictionary: Dict) -> Any:
|
||
|
"""
|
||
|
Most regressors use the same function names and arguments e.g. user
|
||
|
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
||
|
management will be properly handled by Freqai.
|
||
|
:params:
|
||
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||
|
all the training and test data/labels.
|
||
|
"""
|
||
|
|
||
|
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||
|
X = data_dictionary["train_features"]
|
||
|
y = data_dictionary["train_labels"]
|
||
|
|
||
|
model = LGBMRegressor(seed=42, n_estimators=2000, verbosity=1, force_col_wise=True)
|
||
|
model.fit(X=X, y=y, eval_set=eval_set)
|
||
|
|
||
|
return model
|
||
|
|
||
|
def predict(self, unfiltered_dataframe: DataFrame,
|
||
|
dh: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
|
||
|
"""
|
||
|
Filter the prediction features data and predict with it.
|
||
|
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||
|
:return:
|
||
|
:predictions: np.array of predictions
|
||
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||
|
"""
|
||
|
|
||
|
# logger.info("--------------------Starting prediction--------------------")
|
||
|
|
||
|
original_feature_list = dh.find_features(unfiltered_dataframe)
|
||
|
filtered_dataframe, _ = dh.filter_features(
|
||
|
unfiltered_dataframe, original_feature_list, training_filter=False
|
||
|
)
|
||
|
filtered_dataframe = dh.normalize_data_from_metadata(filtered_dataframe)
|
||
|
dh.data_dictionary["prediction_features"] = filtered_dataframe
|
||
|
|
||
|
# optional additional data cleaning/analysis
|
||
|
self.data_cleaning_predict(dh, filtered_dataframe)
|
||
|
|
||
|
predictions = self.model.predict(dh.data_dictionary["prediction_features"])
|
||
|
|
||
|
# compute the non-normalized predictions
|
||
|
dh.predictions = (predictions + 1) * (dh.data["labels_max"] -
|
||
|
dh.data["labels_min"]) / 2 + dh.data["labels_min"]
|
||
|
|
||
|
# logger.info("--------------------Finished prediction--------------------")
|
||
|
|
||
|
return (dh.predictions, dh.do_predict)
|