2018-11-07 18:46:04 +00:00
|
|
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
|
|
|
|
|
|
from functools import reduce
|
2019-07-15 19:35:42 +00:00
|
|
|
from math import exp
|
|
|
|
from typing import Any, Callable, Dict, List
|
|
|
|
from datetime import datetime
|
2018-11-07 18:46:04 +00:00
|
|
|
|
2019-07-15 19:35:42 +00:00
|
|
|
import numpy as np# noqa F401
|
|
|
|
import talib.abstract as ta
|
|
|
|
from pandas import DataFrame
|
2018-11-07 18:46:04 +00:00
|
|
|
from skopt.space import Categorical, Dimension, Integer, Real
|
|
|
|
|
|
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
2018-11-20 16:40:45 +00:00
|
|
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
2018-11-07 18:46:04 +00:00
|
|
|
|
2019-07-15 19:35:42 +00:00
|
|
|
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
|
|
|
# to the number of days
|
|
|
|
TARGET_TRADES = 600
|
|
|
|
# This is assumed to be expected avg profit * expected trade count.
|
|
|
|
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
|
|
|
# self.expected_max_profit = 3.85
|
|
|
|
# Check that the reported Σ% values do not exceed this!
|
|
|
|
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
|
|
|
EXPECTED_MAX_PROFIT = 3.0
|
|
|
|
|
|
|
|
# max average trade duration in minutes
|
|
|
|
# if eval ends with higher value, we consider it a failed eval
|
|
|
|
MAX_ACCEPTED_TRADE_DURATION = 300
|
2018-11-07 18:46:04 +00:00
|
|
|
|
|
|
|
|
|
|
|
# This class is a sample. Feel free to customize it.
|
|
|
|
class SampleHyperOpts(IHyperOpt):
|
|
|
|
"""
|
|
|
|
This is a test hyperopt to inspire you.
|
|
|
|
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
|
|
|
|
You can:
|
|
|
|
- Rename the class name (Do not forget to update class_name)
|
|
|
|
- Add any methods you want to build your hyperopt
|
|
|
|
- Add any lib you need to build your hyperopt
|
|
|
|
You must keep:
|
|
|
|
- the prototype for the methods: populate_indicators, indicator_space, buy_strategy_generator,
|
|
|
|
roi_space, generate_roi_table, stoploss_space
|
|
|
|
"""
|
|
|
|
|
2019-07-15 19:35:42 +00:00
|
|
|
@staticmethod
|
|
|
|
def hyperopt_loss_custom(results: DataFrame, trade_count: int,
|
|
|
|
min_date: datetime, max_date: datetime, *args, **kwargs) -> float:
|
|
|
|
"""
|
|
|
|
Objective function, returns smaller number for more optimal results
|
|
|
|
"""
|
|
|
|
total_profit = results.profit_percent.sum()
|
|
|
|
trade_duration = results.trade_duration.mean()
|
|
|
|
|
|
|
|
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
|
|
|
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
|
|
|
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
|
|
|
|
result = trade_loss + profit_loss + duration_loss
|
|
|
|
return result
|
|
|
|
|
2018-11-07 18:46:04 +00:00
|
|
|
@staticmethod
|
|
|
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
|
|
|
macd = ta.MACD(dataframe)
|
|
|
|
dataframe['macd'] = macd['macd']
|
|
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
|
|
dataframe['mfi'] = ta.MFI(dataframe)
|
|
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
|
|
stoch_fast = ta.STOCHF(dataframe)
|
|
|
|
dataframe['fastd'] = stoch_fast['fastd']
|
|
|
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
|
|
# Bollinger bands
|
|
|
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
|
|
dataframe['bb_lowerband'] = bollinger['lower']
|
2019-01-06 13:13:15 +00:00
|
|
|
dataframe['bb_upperband'] = bollinger['upper']
|
2018-11-07 18:46:04 +00:00
|
|
|
dataframe['sar'] = ta.SAR(dataframe)
|
|
|
|
return dataframe
|
|
|
|
|
2018-11-20 18:41:07 +00:00
|
|
|
@staticmethod
|
|
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
2018-11-07 18:46:04 +00:00
|
|
|
"""
|
|
|
|
Define the buy strategy parameters to be used by hyperopt
|
|
|
|
"""
|
|
|
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Buy strategy Hyperopt will build and use
|
|
|
|
"""
|
|
|
|
conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
|
|
if 'mfi-enabled' in params and params['mfi-enabled']:
|
|
|
|
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
|
|
|
if 'fastd-enabled' in params and params['fastd-enabled']:
|
|
|
|
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
|
|
|
if 'adx-enabled' in params and params['adx-enabled']:
|
|
|
|
conditions.append(dataframe['adx'] > params['adx-value'])
|
|
|
|
if 'rsi-enabled' in params and params['rsi-enabled']:
|
|
|
|
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
|
|
|
|
|
|
|
# TRIGGERS
|
2019-01-06 09:30:58 +00:00
|
|
|
if 'trigger' in params:
|
|
|
|
if params['trigger'] == 'bb_lower':
|
|
|
|
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
|
|
|
if params['trigger'] == 'macd_cross_signal':
|
|
|
|
conditions.append(qtpylib.crossed_above(
|
|
|
|
dataframe['macd'], dataframe['macdsignal']
|
|
|
|
))
|
|
|
|
if params['trigger'] == 'sar_reversal':
|
|
|
|
conditions.append(qtpylib.crossed_above(
|
|
|
|
dataframe['close'], dataframe['sar']
|
|
|
|
))
|
2018-11-07 18:46:04 +00:00
|
|
|
|
2019-05-24 20:08:56 +00:00
|
|
|
if conditions:
|
|
|
|
dataframe.loc[
|
|
|
|
reduce(lambda x, y: x & y, conditions),
|
|
|
|
'buy'] = 1
|
2018-11-07 18:46:04 +00:00
|
|
|
|
|
|
|
return dataframe
|
|
|
|
|
|
|
|
return populate_buy_trend
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def indicator_space() -> List[Dimension]:
|
|
|
|
"""
|
|
|
|
Define your Hyperopt space for searching strategy parameters
|
|
|
|
"""
|
|
|
|
return [
|
|
|
|
Integer(10, 25, name='mfi-value'),
|
|
|
|
Integer(15, 45, name='fastd-value'),
|
|
|
|
Integer(20, 50, name='adx-value'),
|
|
|
|
Integer(20, 40, name='rsi-value'),
|
|
|
|
Categorical([True, False], name='mfi-enabled'),
|
|
|
|
Categorical([True, False], name='fastd-enabled'),
|
|
|
|
Categorical([True, False], name='adx-enabled'),
|
|
|
|
Categorical([True, False], name='rsi-enabled'),
|
|
|
|
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
|
|
|
]
|
|
|
|
|
2019-01-06 09:16:30 +00:00
|
|
|
@staticmethod
|
|
|
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
|
|
"""
|
|
|
|
Define the sell strategy parameters to be used by hyperopt
|
|
|
|
"""
|
|
|
|
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Sell strategy Hyperopt will build and use
|
|
|
|
"""
|
|
|
|
# print(params)
|
|
|
|
conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
|
|
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
|
|
|
|
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
|
|
|
|
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
|
|
|
|
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
|
|
|
|
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
|
2019-01-06 13:13:15 +00:00
|
|
|
conditions.append(dataframe['adx'] < params['sell-adx-value'])
|
2019-01-06 09:16:30 +00:00
|
|
|
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
|
|
|
|
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
|
|
|
|
|
|
|
|
# TRIGGERS
|
|
|
|
if 'sell-trigger' in params:
|
2019-01-06 13:13:15 +00:00
|
|
|
if params['sell-trigger'] == 'sell-bb_upper':
|
|
|
|
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
2019-01-06 09:16:30 +00:00
|
|
|
if params['sell-trigger'] == 'sell-macd_cross_signal':
|
|
|
|
conditions.append(qtpylib.crossed_above(
|
2019-01-06 13:13:15 +00:00
|
|
|
dataframe['macdsignal'], dataframe['macd']
|
2019-01-06 09:16:30 +00:00
|
|
|
))
|
|
|
|
if params['sell-trigger'] == 'sell-sar_reversal':
|
|
|
|
conditions.append(qtpylib.crossed_above(
|
2019-01-06 13:13:15 +00:00
|
|
|
dataframe['sar'], dataframe['close']
|
2019-01-06 09:16:30 +00:00
|
|
|
))
|
|
|
|
|
2019-05-24 20:08:56 +00:00
|
|
|
if conditions:
|
|
|
|
dataframe.loc[
|
|
|
|
reduce(lambda x, y: x & y, conditions),
|
|
|
|
'sell'] = 1
|
2019-01-06 09:16:30 +00:00
|
|
|
|
|
|
|
return dataframe
|
|
|
|
|
|
|
|
return populate_sell_trend
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def sell_indicator_space() -> List[Dimension]:
|
|
|
|
"""
|
|
|
|
Define your Hyperopt space for searching sell strategy parameters
|
|
|
|
"""
|
|
|
|
return [
|
|
|
|
Integer(75, 100, name='sell-mfi-value'),
|
|
|
|
Integer(50, 100, name='sell-fastd-value'),
|
|
|
|
Integer(50, 100, name='sell-adx-value'),
|
|
|
|
Integer(60, 100, name='sell-rsi-value'),
|
|
|
|
Categorical([True, False], name='sell-mfi-enabled'),
|
|
|
|
Categorical([True, False], name='sell-fastd-enabled'),
|
|
|
|
Categorical([True, False], name='sell-adx-enabled'),
|
|
|
|
Categorical([True, False], name='sell-rsi-enabled'),
|
2019-01-06 13:13:15 +00:00
|
|
|
Categorical(['sell-bb_upper',
|
2019-01-06 09:16:30 +00:00
|
|
|
'sell-macd_cross_signal',
|
|
|
|
'sell-sar_reversal'], name='sell-trigger')
|
|
|
|
]
|
|
|
|
|
2018-11-07 18:46:04 +00:00
|
|
|
@staticmethod
|
|
|
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
|
|
"""
|
|
|
|
Generate the ROI table that will be used by Hyperopt
|
|
|
|
"""
|
|
|
|
roi_table = {}
|
|
|
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
|
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
|
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
|
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
|
|
|
|
|
|
return roi_table
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def stoploss_space() -> List[Dimension]:
|
|
|
|
"""
|
|
|
|
Stoploss Value to search
|
|
|
|
"""
|
|
|
|
return [
|
|
|
|
Real(-0.5, -0.02, name='stoploss'),
|
|
|
|
]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def roi_space() -> List[Dimension]:
|
|
|
|
"""
|
|
|
|
Values to search for each ROI steps
|
|
|
|
"""
|
|
|
|
return [
|
|
|
|
Integer(10, 120, name='roi_t1'),
|
|
|
|
Integer(10, 60, name='roi_t2'),
|
|
|
|
Integer(10, 40, name='roi_t3'),
|
|
|
|
Real(0.01, 0.04, name='roi_p1'),
|
|
|
|
Real(0.01, 0.07, name='roi_p2'),
|
|
|
|
Real(0.01, 0.20, name='roi_p3'),
|
|
|
|
]
|
2019-01-06 13:13:15 +00:00
|
|
|
|
|
|
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Based on TA indicators. Should be a copy of from strategy
|
|
|
|
must align to populate_indicators in this file
|
|
|
|
Only used when --spaces does not include buy
|
|
|
|
"""
|
|
|
|
dataframe.loc[
|
|
|
|
(
|
|
|
|
(dataframe['close'] < dataframe['bb_lowerband']) &
|
|
|
|
(dataframe['mfi'] < 16) &
|
|
|
|
(dataframe['adx'] > 25) &
|
|
|
|
(dataframe['rsi'] < 21)
|
|
|
|
),
|
|
|
|
'buy'] = 1
|
|
|
|
|
|
|
|
return dataframe
|
|
|
|
|
|
|
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Based on TA indicators. Should be a copy of from strategy
|
|
|
|
must align to populate_indicators in this file
|
|
|
|
Only used when --spaces does not include sell
|
|
|
|
"""
|
|
|
|
dataframe.loc[
|
|
|
|
(
|
|
|
|
(qtpylib.crossed_above(
|
|
|
|
dataframe['macdsignal'], dataframe['macd']
|
|
|
|
)) &
|
|
|
|
(dataframe['fastd'] > 54)
|
|
|
|
),
|
|
|
|
'sell'] = 1
|
|
|
|
return dataframe
|