stable/freqtrade/optimize/default_hyperopt.py

131 lines
4.7 KiB
Python
Raw Normal View History

# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
import talib.abstract as ta
from pandas import DataFrame
2018-11-07 18:46:04 +00:00
from typing import Dict, Any, Callable, List
from functools import reduce
2018-11-07 18:46:04 +00:00
from skopt.space import Categorical, Dimension, Integer, Real
import freqtrade.vendor.qtpylib.indicators as qtpylib
2018-11-20 16:40:45 +00:00
from freqtrade.optimize.hyperopt_interface import IHyperOpt
class_name = 'DefaultHyperOpts'
class DefaultHyperOpts(IHyperOpt):
"""
Default hyperopt provided by freqtrade bot.
You can override it with your own hyperopt
"""
@staticmethod
2018-11-07 18:46:04 +00:00
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['adx'] = ta.ADX(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
2018-11-07 18:46:04 +00:00
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
"""
2018-11-07 18:46:04 +00:00
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
"""
conditions = []
# GUARDS AND TRENDS
2018-11-07 18:46:04 +00:00
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
2018-11-07 18:46:04 +00:00
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
2018-11-07 18:46:04 +00:00
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
2018-11-07 18:46:04 +00:00
))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
2018-11-07 18:46:04 +00:00
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
"""
2018-11-07 18:46:04 +00:00
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Generate the ROI table that will be used by Hyperopt
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@staticmethod
2018-11-07 18:46:04 +00:00
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
"""
2018-11-07 18:46:04 +00:00
return [
Real(-0.5, -0.02, name='stoploss'),
]
@staticmethod
2018-11-07 18:46:04 +00:00
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
"""
2018-11-07 18:46:04 +00:00
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
Real(0.01, 0.04, name='roi_p1'),
Real(0.01, 0.07, name='roi_p2'),
Real(0.01, 0.20, name='roi_p3'),
]