stable/tests/freqai/test_freqai_interface.py

369 lines
15 KiB
Python
Raw Normal View History

2022-09-15 22:46:55 +00:00
import copy
import platform
import shutil
from pathlib import Path
from unittest.mock import MagicMock
import pytest
from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.plugins.pairlistmanager import PairListManager
from tests.conftest import get_patched_exchange, log_has_re
from tests.freqai.conftest import get_patched_freqai_strategy
2022-08-08 18:15:18 +00:00
def is_arm() -> bool:
machine = platform.machine()
return "arm" in machine or "aarch64" in machine
2022-09-10 18:06:52 +00:00
@pytest.mark.parametrize('model', [
'LightGBMRegressor',
'XGBoostRegressor',
'CatboostRegressor',
])
def test_extract_data_and_train_model_Regressors(mocker, freqai_conf, model):
if is_arm() and model == 'CatboostRegressor':
pytest.skip("CatBoost is not supported on ARM")
freqai_conf.update({"freqaimodel": model})
freqai_conf.update({"timerange": "20180110-20180130"})
2022-09-10 18:06:52 +00:00
freqai_conf.update({"strategy": "freqai_test_strat"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
2022-07-23 14:05:25 +00:00
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
2022-07-25 08:48:04 +00:00
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").is_file()
shutil.rmtree(Path(freqai.dk.full_path))
@pytest.mark.parametrize('model', [
'LightGBMRegressorMultiTarget',
'XGBoostRegressorMultiTarget',
'CatboostRegressorMultiTarget',
])
def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model):
if is_arm() and model == 'CatboostRegressorMultiTarget':
pytest.skip("CatBoost is not supported on ARM")
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.update({"strategy": "freqai_test_multimodel_strat"})
freqai_conf.update({"freqaimodel": model})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
assert len(freqai.dk.label_list) == 2
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").is_file()
2022-08-15 04:49:28 +00:00
assert len(freqai.dk.data['training_features_list']) == 26
shutil.rmtree(Path(freqai.dk.full_path))
2022-09-10 18:17:57 +00:00
@pytest.mark.parametrize('model', [
'LightGBMClassifier',
'CatboostClassifier',
'XGBoostClassifier',
2022-09-10 18:17:57 +00:00
])
def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
if is_arm() and model == 'CatboostClassifier':
pytest.skip("CatBoost is not supported on ARM")
2022-09-10 18:17:57 +00:00
freqai_conf.update({"freqaimodel": model})
freqai_conf.update({"strategy": "freqai_test_classifier"})
2022-09-10 18:17:57 +00:00
freqai_conf.update({"timerange": "20180110-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
freqai.extract_data_and_train_model(new_timerange, "ADA/BTC",
strategy, freqai.dk, data_load_timerange)
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").exists()
shutil.rmtree(Path(freqai.dk.full_path))
def test_start_backtesting(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180120-20180130"})
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
2022-07-23 14:05:25 +00:00
freqai = strategy.freqai
freqai.live = False
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180110-20180130")
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
metadata = {"pair": "LTC/BTC"}
freqai.start_backtesting(df, metadata, freqai.dk)
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
assert len(model_folders) == 6
shutil.rmtree(Path(freqai.dk.full_path))
def test_start_backtesting_subdaily_backtest_period(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180120-20180124"})
freqai_conf.get("freqai", {}).update({"backtest_period_days": 0.5})
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = False
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180110-20180130")
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
metadata = {"pair": "LTC/BTC"}
freqai.start_backtesting(df, metadata, freqai.dk)
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
assert len(model_folders) == 9
shutil.rmtree(Path(freqai.dk.full_path))
def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
freqai_conf.update({"timerange": "20180120-20180130"})
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
2022-07-23 14:05:25 +00:00
freqai = strategy.freqai
freqai.live = False
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180110-20180130")
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
metadata = {"pair": "ADA/BTC"}
freqai.start_backtesting(df, metadata, freqai.dk)
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
assert len(model_folders) == 6
# without deleting the exiting folder structure, re-run
freqai_conf.update({"timerange": "20180120-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
2022-07-23 14:05:25 +00:00
freqai = strategy.freqai
freqai.live = False
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180110-20180130")
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
freqai.start_backtesting(df, metadata, freqai.dk)
assert log_has_re(
"Found backtesting prediction file ",
caplog,
)
path = (freqai.dd.full_path / freqai.dk.backtest_predictions_folder)
prediction_files = [x for x in path.iterdir() if x.is_file()]
assert len(prediction_files) == 5
shutil.rmtree(Path(freqai.dk.full_path))
2022-07-25 08:48:04 +00:00
def test_follow_mode(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
2022-07-25 08:48:04 +00:00
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
2022-07-25 08:48:04 +00:00
metadata = {"pair": "ADA/BTC"}
freqai.dd.set_pair_dict_info(metadata)
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
2022-07-25 08:48:04 +00:00
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").is_file()
# start the follower and ask it to predict on existing files
freqai_conf.get("freqai", {}).update({"follow_mode": "true"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf, freqai.live)
2022-07-25 08:48:04 +00:00
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
2022-07-25 08:48:04 +00:00
df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m')
freqai.start_live(df, metadata, strategy, freqai.dk)
assert len(freqai.dk.return_dataframe.index) == 5702
shutil.rmtree(Path(freqai.dk.full_path))
def test_principal_component_analysis(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.get("freqai", {}).get("feature_parameters", {}).update(
{"princpial_component_analysis": "true"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_pca_object.pkl")
shutil.rmtree(Path(freqai.dk.full_path))
2022-09-15 22:46:55 +00:00
def test_spice_rack(mocker, default_conf, tmpdir, caplog):
2022-09-17 15:36:48 +00:00
strategy = get_patched_freqai_strategy(mocker, default_conf)
exchange = get_patched_exchange(mocker, default_conf)
strategy.dp = DataProvider(default_conf, exchange)
2022-09-15 22:46:55 +00:00
default_conf.update({"freqai_spice_rack": "true"})
default_conf.update({"freqai_identifier": "spicy-id"})
default_conf["config_files"] = [Path('config_examples', 'config_freqai.example.json')]
default_conf["timerange"] = "20180110-20180115"
default_conf["datadir"] = Path(default_conf["datadir"])
default_conf['exchange'].update({'pair_whitelist':
['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC']})
default_conf["user_data_dir"] = Path(tmpdir)
freqai_conf = copy.deepcopy(default_conf)
2022-09-17 15:36:48 +00:00
strategy.config = freqai_conf
strategy.load_freqAI_model()
2022-09-15 22:46:55 +00:00
assert log_has_re("Spice rack will use LTC/USD", caplog)
assert log_has_re("Spice rack will use 15m", caplog)
2022-09-15 22:46:55 +00:00
assert 'freqai' in freqai_conf
2022-09-17 15:36:48 +00:00
assert strategy.freqai
@pytest.mark.parametrize('timeframes,corr_pairs', [
(['5m'], ['ADA/BTC', 'DASH/BTC']),
2022-09-17 12:19:20 +00:00
(['5m'], ['ADA/BTC', 'DASH/BTC', 'ETH/USDT']),
(['5m', '15m'], ['ADA/BTC', 'DASH/BTC', 'ETH/USDT']),
])
def test_freqai_informative_pairs(mocker, freqai_conf, timeframes, corr_pairs):
freqai_conf['freqai']['feature_parameters'].update({
'include_timeframes': timeframes,
'include_corr_pairlist': corr_pairs,
})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
pairlists = PairListManager(exchange, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange, pairlists)
pairlist = strategy.dp.current_whitelist()
pairs_a = strategy.informative_pairs()
assert len(pairs_a) == 0
pairs_b = strategy.gather_informative_pairs()
# we expect unique pairs * timeframes
assert len(pairs_b) == len(set(pairlist + corr_pairs)) * len(timeframes)