2017-11-18 07:45:01 +00:00
|
|
|
# pragma pylint: disable=missing-docstring,W0212
|
2017-11-14 21:15:24 +00:00
|
|
|
|
2017-11-17 16:54:31 +00:00
|
|
|
|
2017-09-28 14:00:14 +00:00
|
|
|
import logging
|
2017-09-28 21:26:28 +00:00
|
|
|
import os
|
2017-11-14 21:15:24 +00:00
|
|
|
from typing import Tuple, Dict
|
2017-09-28 21:26:28 +00:00
|
|
|
|
2017-09-24 14:23:29 +00:00
|
|
|
import arrow
|
2017-11-14 21:15:24 +00:00
|
|
|
import pytest
|
2017-09-25 18:06:15 +00:00
|
|
|
from pandas import DataFrame
|
2017-11-14 22:14:01 +00:00
|
|
|
from tabulate import tabulate
|
2017-09-28 21:26:28 +00:00
|
|
|
|
2017-11-04 17:43:23 +00:00
|
|
|
from freqtrade import exchange
|
2017-11-15 18:06:37 +00:00
|
|
|
from freqtrade.analyze import parse_ticker_dataframe, populate_indicators, \
|
|
|
|
populate_buy_trend, populate_sell_trend
|
2017-11-04 17:43:23 +00:00
|
|
|
from freqtrade.exchange import Bittrex
|
2017-11-16 05:49:06 +00:00
|
|
|
from freqtrade.main import min_roi_reached
|
2017-11-17 16:54:31 +00:00
|
|
|
from freqtrade.misc import load_config
|
2017-09-28 21:26:28 +00:00
|
|
|
from freqtrade.persistence import Trade
|
2017-11-14 23:11:46 +00:00
|
|
|
from freqtrade.tests import load_backtesting_data
|
2017-09-28 21:26:28 +00:00
|
|
|
|
2017-11-14 21:15:24 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
2017-09-25 18:06:15 +00:00
|
|
|
|
2017-10-30 23:36:35 +00:00
|
|
|
|
2017-11-14 21:15:24 +00:00
|
|
|
def format_results(results: DataFrame):
|
2017-11-18 07:44:28 +00:00
|
|
|
return ('Made {} buys. Average profit {:.2f}%. '
|
|
|
|
'Total profit was {:.3f}. Average duration {:.1f} mins.').format(
|
|
|
|
len(results.index),
|
|
|
|
results.profit.mean() * 100.0,
|
|
|
|
results.profit.sum(),
|
|
|
|
results.duration.mean() * 5,
|
|
|
|
)
|
2017-09-24 14:23:29 +00:00
|
|
|
|
2017-10-30 23:36:35 +00:00
|
|
|
|
2017-11-15 18:06:37 +00:00
|
|
|
def preprocess(backdata) -> Dict[str, DataFrame]:
|
|
|
|
processed = {}
|
|
|
|
for pair, pair_data in backdata.items():
|
|
|
|
processed[pair] = populate_indicators(parse_ticker_dataframe(pair_data))
|
|
|
|
return processed
|
|
|
|
|
|
|
|
|
2017-11-17 16:54:31 +00:00
|
|
|
def get_timeframe(data: Dict[str, Dict]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
2017-11-14 22:14:01 +00:00
|
|
|
"""
|
|
|
|
Get the maximum timeframe for the given backtest data
|
|
|
|
:param data: dictionary with backtesting data
|
|
|
|
:return: tuple containing min_date, max_date
|
|
|
|
"""
|
2017-11-14 21:15:24 +00:00
|
|
|
min_date, max_date = None, None
|
2017-11-14 22:14:01 +00:00
|
|
|
for values in data.values():
|
2017-11-18 07:43:42 +00:00
|
|
|
sorted_values = sorted(values, key=lambda d: arrow.get(d['T']))
|
|
|
|
if not min_date or sorted_values[0]['T'] < min_date:
|
|
|
|
min_date = sorted_values[0]['T']
|
|
|
|
if not max_date or sorted_values[-1]['T'] > max_date:
|
|
|
|
max_date = sorted_values[-1]['T']
|
2017-11-14 21:15:24 +00:00
|
|
|
return arrow.get(min_date), arrow.get(max_date)
|
|
|
|
|
|
|
|
|
2017-11-14 22:46:48 +00:00
|
|
|
def generate_text_table(data: Dict[str, Dict], results: DataFrame, stake_currency) -> str:
|
2017-11-14 22:14:01 +00:00
|
|
|
"""
|
|
|
|
Generates and returns a text table for the given backtest data and the results dataframe
|
|
|
|
:return: pretty printed table with tabulate as str
|
|
|
|
"""
|
|
|
|
tabular_data = []
|
|
|
|
headers = ['pair', 'buy count', 'avg profit', 'total profit', 'avg duration']
|
|
|
|
for pair in data:
|
|
|
|
result = results[results.currency == pair]
|
|
|
|
tabular_data.append([
|
|
|
|
pair,
|
|
|
|
len(result.index),
|
|
|
|
'{:.2f}%'.format(result.profit.mean() * 100.0),
|
2017-11-14 22:46:48 +00:00
|
|
|
'{:.08f} {}'.format(result.profit.sum(), stake_currency),
|
2017-11-14 22:14:01 +00:00
|
|
|
'{:.2f}'.format(result.duration.mean() * 5),
|
|
|
|
])
|
|
|
|
|
|
|
|
# Append Total
|
|
|
|
tabular_data.append([
|
|
|
|
'TOTAL',
|
|
|
|
len(results.index),
|
|
|
|
'{:.2f}%'.format(results.profit.mean() * 100.0),
|
2017-11-14 22:46:48 +00:00
|
|
|
'{:.08f} {}'.format(results.profit.sum(), stake_currency),
|
2017-11-14 22:14:01 +00:00
|
|
|
'{:.2f}'.format(results.duration.mean() * 5),
|
|
|
|
])
|
|
|
|
return tabulate(tabular_data, headers=headers)
|
|
|
|
|
|
|
|
|
2017-11-15 18:06:37 +00:00
|
|
|
def backtest(backtest_conf, processed, mocker):
|
2017-10-01 08:02:47 +00:00
|
|
|
trades = []
|
2017-11-04 17:43:23 +00:00
|
|
|
exchange._API = Bittrex({'key': '', 'secret': ''})
|
2017-11-07 19:12:56 +00:00
|
|
|
mocker.patch.dict('freqtrade.main._CONF', backtest_conf)
|
2017-11-15 18:06:37 +00:00
|
|
|
for pair, pair_data in processed.items():
|
2017-11-17 10:27:33 +00:00
|
|
|
pair_data['buy'] = 0
|
|
|
|
pair_data['sell'] = 0
|
|
|
|
ticker = populate_sell_trend(populate_buy_trend(pair_data))
|
2017-11-07 17:24:51 +00:00
|
|
|
# for each buy point
|
|
|
|
for row in ticker[ticker.buy == 1].itertuples(index=True):
|
|
|
|
trade = Trade(
|
|
|
|
open_rate=row.close,
|
|
|
|
open_date=row.date,
|
2017-11-14 22:46:48 +00:00
|
|
|
amount=backtest_conf['stake_amount'],
|
2017-11-07 17:24:51 +00:00
|
|
|
fee=exchange.get_fee() * 2
|
|
|
|
)
|
|
|
|
# calculate win/lose forwards from buy point
|
|
|
|
for row2 in ticker[row.Index:].itertuples(index=True):
|
2017-11-16 05:49:06 +00:00
|
|
|
if min_roi_reached(trade, row2.close, row2.date) or row2.sell == 1:
|
2017-11-07 17:24:51 +00:00
|
|
|
current_profit = trade.calc_profit(row2.close)
|
2017-09-25 18:06:15 +00:00
|
|
|
|
2017-11-07 17:24:51 +00:00
|
|
|
trades.append((pair, current_profit, row2.Index - row.Index))
|
|
|
|
break
|
2017-10-01 08:02:47 +00:00
|
|
|
labels = ['currency', 'profit', 'duration']
|
2017-11-17 06:02:06 +00:00
|
|
|
return DataFrame.from_records(trades, columns=labels)
|
2017-09-24 14:23:29 +00:00
|
|
|
|
2017-10-30 23:36:35 +00:00
|
|
|
|
2017-11-14 21:15:24 +00:00
|
|
|
@pytest.mark.skipif(not os.environ.get('BACKTEST'), reason="BACKTEST not set")
|
2017-11-14 23:11:46 +00:00
|
|
|
def test_backtest(backtest_conf, mocker):
|
2017-11-14 21:15:24 +00:00
|
|
|
print('')
|
2017-11-17 16:54:31 +00:00
|
|
|
exchange._API = Bittrex({'key': '', 'secret': ''})
|
2017-11-14 21:15:24 +00:00
|
|
|
|
2017-11-17 16:54:31 +00:00
|
|
|
# Load configuration file based on env variable
|
2017-11-14 21:15:24 +00:00
|
|
|
conf_path = os.environ.get('BACKTEST_CONFIG')
|
|
|
|
if conf_path:
|
|
|
|
print('Using config: {} ...'.format(conf_path))
|
2017-11-17 16:54:31 +00:00
|
|
|
config = load_config(conf_path)
|
|
|
|
else:
|
|
|
|
config = backtest_conf
|
2017-11-14 21:15:24 +00:00
|
|
|
|
2017-11-17 16:54:31 +00:00
|
|
|
# Parse ticker interval
|
2017-11-14 21:37:30 +00:00
|
|
|
ticker_interval = int(os.environ.get('BACKTEST_TICKER_INTERVAL') or 5)
|
2017-11-14 22:14:01 +00:00
|
|
|
print('Using ticker_interval: {} ...'.format(ticker_interval))
|
2017-11-14 21:37:30 +00:00
|
|
|
|
2017-11-14 23:11:46 +00:00
|
|
|
data = {}
|
2017-11-14 21:15:24 +00:00
|
|
|
if os.environ.get('BACKTEST_LIVE'):
|
2017-11-14 22:14:01 +00:00
|
|
|
print('Downloading data for all pairs in whitelist ...')
|
2017-11-14 21:15:24 +00:00
|
|
|
for pair in config['exchange']['pair_whitelist']:
|
2017-11-14 23:11:46 +00:00
|
|
|
data[pair] = exchange.get_ticker_history(pair, ticker_interval)
|
|
|
|
else:
|
|
|
|
print('Using local backtesting data (ignoring whitelist in given config)...')
|
|
|
|
data = load_backtesting_data(ticker_interval)
|
2017-11-14 21:15:24 +00:00
|
|
|
|
2017-11-14 22:46:48 +00:00
|
|
|
print('Using stake_currency: {} ...\nUsing stake_amount: {} ...'.format(
|
|
|
|
config['stake_currency'], config['stake_amount']
|
|
|
|
))
|
|
|
|
|
2017-11-17 16:54:31 +00:00
|
|
|
# Print timeframe
|
2017-11-14 21:15:24 +00:00
|
|
|
min_date, max_date = get_timeframe(data)
|
|
|
|
print('Measuring data from {} up to {} ...'.format(
|
|
|
|
min_date.isoformat(), max_date.isoformat()
|
|
|
|
))
|
2017-09-24 14:23:29 +00:00
|
|
|
|
2017-11-17 16:54:31 +00:00
|
|
|
# Execute backtest and print results
|
2017-11-14 21:15:24 +00:00
|
|
|
results = backtest(config, preprocess(data), mocker)
|
2017-11-14 22:46:48 +00:00
|
|
|
print('====================== BACKTESTING REPORT ======================================\n\n'
|
|
|
|
'NOTE: This Report doesn\'t respect the limits of max_open_trades, \n'
|
|
|
|
' so the projected values should be taken with a grain of salt.\n')
|
|
|
|
print(generate_text_table(data, results, config['stake_currency']))
|