2021-09-21 05:11:53 +00:00
|
|
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
|
|
|
2021-09-22 18:14:52 +00:00
|
|
|
from datetime import datetime
|
2021-09-22 18:36:03 +00:00
|
|
|
|
2021-09-21 05:11:53 +00:00
|
|
|
import talib.abstract as ta
|
|
|
|
from pandas import DataFrame
|
|
|
|
|
|
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
2022-01-22 16:25:21 +00:00
|
|
|
from freqtrade.persistence import Trade
|
2021-09-21 05:11:53 +00:00
|
|
|
from freqtrade.strategy import (BooleanParameter, DecimalParameter, IntParameter, IStrategy,
|
|
|
|
RealParameter)
|
|
|
|
|
|
|
|
|
|
|
|
class StrategyTestV3(IStrategy):
|
|
|
|
"""
|
|
|
|
Strategy used by tests freqtrade bot.
|
|
|
|
Please do not modify this strategy, it's intended for internal use only.
|
|
|
|
Please look at the SampleStrategy in the user_data/strategy directory
|
|
|
|
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
|
|
|
for samples and inspiration.
|
|
|
|
"""
|
|
|
|
INTERFACE_VERSION = 3
|
|
|
|
|
|
|
|
# Minimal ROI designed for the strategy
|
|
|
|
minimal_roi = {
|
|
|
|
"40": 0.0,
|
|
|
|
"30": 0.01,
|
|
|
|
"20": 0.02,
|
|
|
|
"0": 0.04
|
|
|
|
}
|
|
|
|
|
|
|
|
# Optimal stoploss designed for the strategy
|
|
|
|
stoploss = -0.10
|
|
|
|
|
|
|
|
# Optimal timeframe for the strategy
|
|
|
|
timeframe = '5m'
|
|
|
|
|
|
|
|
# Optional order type mapping
|
|
|
|
order_types = {
|
2022-03-08 05:59:14 +00:00
|
|
|
'entry': 'limit',
|
|
|
|
'exit': 'limit',
|
2021-09-21 05:11:53 +00:00
|
|
|
'stoploss': 'limit',
|
|
|
|
'stoploss_on_exchange': False
|
|
|
|
}
|
|
|
|
|
|
|
|
# Number of candles the strategy requires before producing valid signals
|
|
|
|
startup_candle_count: int = 20
|
|
|
|
|
|
|
|
# Optional time in force for orders
|
|
|
|
order_time_in_force = {
|
2022-03-07 06:09:01 +00:00
|
|
|
'entry': 'gtc',
|
|
|
|
'exit': 'gtc',
|
2021-09-21 05:11:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
buy_params = {
|
|
|
|
'buy_rsi': 35,
|
|
|
|
# Intentionally not specified, so "default" is tested
|
|
|
|
# 'buy_plusdi': 0.4
|
|
|
|
}
|
|
|
|
|
|
|
|
sell_params = {
|
|
|
|
'sell_rsi': 74,
|
|
|
|
'sell_minusdi': 0.4
|
|
|
|
}
|
|
|
|
|
|
|
|
buy_rsi = IntParameter([0, 50], default=30, space='buy')
|
|
|
|
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy')
|
|
|
|
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
|
|
|
|
sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell',
|
|
|
|
load=False)
|
|
|
|
protection_enabled = BooleanParameter(default=True)
|
|
|
|
protection_cooldown_lookback = IntParameter([0, 50], default=30)
|
|
|
|
|
2022-02-12 22:10:21 +00:00
|
|
|
# TODO: Can this work with protection tests? (replace HyperoptableStrategy implicitly ... )
|
2021-09-21 18:18:14 +00:00
|
|
|
# @property
|
|
|
|
# def protections(self):
|
|
|
|
# prot = []
|
|
|
|
# if self.protection_enabled.value:
|
|
|
|
# prot.append({
|
|
|
|
# "method": "CooldownPeriod",
|
|
|
|
# "stop_duration_candles": self.protection_cooldown_lookback.value
|
|
|
|
# })
|
|
|
|
# return prot
|
2021-09-21 05:11:53 +00:00
|
|
|
|
|
|
|
def informative_pairs(self):
|
|
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
|
|
|
|
# Momentum Indicator
|
|
|
|
# ------------------------------------
|
|
|
|
|
|
|
|
# ADX
|
|
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
|
|
|
|
|
|
|
# MACD
|
|
|
|
macd = ta.MACD(dataframe)
|
|
|
|
dataframe['macd'] = macd['macd']
|
|
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
|
|
dataframe['macdhist'] = macd['macdhist']
|
|
|
|
|
|
|
|
# Minus Directional Indicator / Movement
|
|
|
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
|
|
|
|
|
|
# Plus Directional Indicator / Movement
|
|
|
|
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
|
|
|
|
|
|
# RSI
|
|
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
|
|
|
|
|
|
# Stoch fast
|
|
|
|
stoch_fast = ta.STOCHF(dataframe)
|
|
|
|
dataframe['fastd'] = stoch_fast['fastd']
|
|
|
|
dataframe['fastk'] = stoch_fast['fastk']
|
|
|
|
|
|
|
|
# Bollinger bands
|
|
|
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
|
|
dataframe['bb_lowerband'] = bollinger['lower']
|
|
|
|
dataframe['bb_middleband'] = bollinger['mid']
|
|
|
|
dataframe['bb_upperband'] = bollinger['upper']
|
|
|
|
|
|
|
|
# EMA - Exponential Moving Average
|
|
|
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
|
|
|
|
|
|
|
return dataframe
|
|
|
|
|
|
|
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
|
|
|
|
dataframe.loc[
|
|
|
|
(
|
|
|
|
(dataframe['rsi'] < self.buy_rsi.value) &
|
|
|
|
(dataframe['fastd'] < 35) &
|
|
|
|
(dataframe['adx'] > 30) &
|
|
|
|
(dataframe['plus_di'] > self.buy_plusdi.value)
|
|
|
|
) |
|
|
|
|
(
|
|
|
|
(dataframe['adx'] > 65) &
|
|
|
|
(dataframe['plus_di'] > self.buy_plusdi.value)
|
|
|
|
),
|
2021-09-21 18:18:14 +00:00
|
|
|
'enter_long'] = 1
|
2021-09-22 18:36:03 +00:00
|
|
|
dataframe.loc[
|
|
|
|
(
|
|
|
|
qtpylib.crossed_below(dataframe['rsi'], self.sell_rsi.value)
|
|
|
|
),
|
|
|
|
'enter_short'] = 1
|
2021-09-21 05:11:53 +00:00
|
|
|
|
|
|
|
return dataframe
|
|
|
|
|
|
|
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
dataframe.loc[
|
|
|
|
(
|
|
|
|
(
|
|
|
|
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) |
|
|
|
|
(qtpylib.crossed_above(dataframe['fastd'], 70))
|
|
|
|
) &
|
|
|
|
(dataframe['adx'] > 10) &
|
|
|
|
(dataframe['minus_di'] > 0)
|
|
|
|
) |
|
|
|
|
(
|
|
|
|
(dataframe['adx'] > 70) &
|
|
|
|
(dataframe['minus_di'] > self.sell_minusdi.value)
|
|
|
|
),
|
2021-09-21 18:18:14 +00:00
|
|
|
'exit_long'] = 1
|
2021-09-21 05:11:53 +00:00
|
|
|
|
2021-09-22 18:36:03 +00:00
|
|
|
dataframe.loc[
|
|
|
|
(
|
|
|
|
qtpylib.crossed_above(dataframe['rsi'], self.buy_rsi.value)
|
|
|
|
),
|
|
|
|
'exit_short'] = 1
|
|
|
|
|
2021-09-21 05:11:53 +00:00
|
|
|
return dataframe
|
2021-09-22 18:14:52 +00:00
|
|
|
|
|
|
|
def leverage(self, pair: str, current_time: datetime, current_rate: float,
|
|
|
|
proposed_leverage: float, max_leverage: float, side: str,
|
|
|
|
**kwargs) -> float:
|
|
|
|
# Return 3.0 in all cases.
|
|
|
|
# Bot-logic must make sure it's an allowed leverage and eventually adjust accordingly.
|
|
|
|
|
|
|
|
return 3.0
|
2022-01-22 16:25:21 +00:00
|
|
|
|
|
|
|
def adjust_trade_position(self, trade: Trade, current_time: datetime, current_rate: float,
|
|
|
|
current_profit: float, min_stake: float, max_stake: float, **kwargs):
|
|
|
|
|
|
|
|
if current_profit < -0.0075:
|
2022-02-13 15:01:44 +00:00
|
|
|
orders = trade.select_filled_orders(trade.enter_side)
|
2022-01-22 16:25:21 +00:00
|
|
|
return round(orders[0].cost, 0)
|
|
|
|
|
|
|
|
return None
|