stable/freqtrade/optimize/__init__.py

168 lines
5.5 KiB
Python
Raw Normal View History

# pragma pylint: disable=missing-docstring
import logging
import json
import os
2018-03-11 19:24:24 +00:00
from datetime import datetime
from typing import Optional, List, Dict
2017-12-26 07:59:38 +00:00
from pandas import DataFrame
from freqtrade.exchange import get_ticker_history
from freqtrade.analyze import populate_indicators, parse_ticker_dataframe
2018-01-18 07:10:48 +00:00
2018-01-11 14:49:04 +00:00
from freqtrade import misc
2018-01-18 07:10:48 +00:00
from user_data.hyperopt_conf import hyperopt_optimize_conf
import gzip
logger = logging.getLogger(__name__)
2018-01-15 21:25:02 +00:00
def trim_tickerlist(tickerlist, timerange):
(stype, start, stop) = timerange
if stype == (None, 'line'):
return tickerlist[stop:]
elif stype == ('line', None):
return tickerlist[0:start]
elif stype == ('index', 'index'):
return tickerlist[start:stop]
2018-01-26 16:41:41 +00:00
return tickerlist
2018-01-15 21:25:02 +00:00
2018-01-28 22:28:28 +00:00
def load_tickerdata_file(datadir, pair, ticker_interval, timerange=None):
2018-01-05 09:20:48 +00:00
"""
Load a pair from file,
:return dict OR empty if unsuccesful
"""
path = make_testdata_path(datadir)
2018-01-05 09:20:48 +00:00
file = '{abspath}/{pair}-{ticker_interval}.json'.format(
abspath=path,
2018-03-11 19:24:24 +00:00
pair=pair.replace('/', '_'),
2018-01-05 09:20:48 +00:00
ticker_interval=ticker_interval,
)
gzipfile = file + '.gz'
# If the file does not exist we download it when None is returned.
# If file exists, read the file, load the json
if os.path.isfile(gzipfile):
with gzip.open(gzipfile) as tickerdata:
pairdata = json.load(tickerdata)
elif os.path.isfile(file):
with open(file) as tickerdata:
pairdata = json.load(tickerdata)
else:
2018-01-05 09:20:48 +00:00
return None
2018-01-15 21:25:02 +00:00
if timerange:
pairdata = trim_tickerlist(pairdata, timerange)
2018-01-05 09:20:48 +00:00
return pairdata
def load_data(datadir: str, ticker_interval: int, pairs: Optional[List[str]] = None,
refresh_pairs: Optional[bool] = False, timerange=None) -> Dict[str, List]:
"""
Loads ticker history data for the given parameters
:param ticker_interval: ticker interval in minutes
:param pairs: list of pairs
:return: dict
"""
result = {}
2017-12-21 07:31:26 +00:00
_pairs = pairs or hyperopt_optimize_conf()['exchange']['pair_whitelist']
# If the user force the refresh of pairs
if refresh_pairs:
logger.info('Download data for all pairs and store them in %s', datadir)
download_pairs(datadir, _pairs, ticker_interval)
2017-12-21 07:31:26 +00:00
for pair in _pairs:
2018-01-15 21:25:02 +00:00
pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange)
2018-01-05 09:20:48 +00:00
if not pairdata:
# download the tickerdata from exchange
download_backtesting_testdata(datadir, pair=pair, interval=ticker_interval)
2018-01-05 09:20:48 +00:00
# and retry reading the pair
2018-01-15 21:25:02 +00:00
pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange)
2018-01-05 09:20:48 +00:00
result[pair] = pairdata
return result
2018-01-15 21:25:02 +00:00
def tickerdata_to_dataframe(data):
2018-01-10 22:00:40 +00:00
preprocessed = preprocess(data)
return preprocessed
def preprocess(tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
"""Creates a dataframe and populates indicators for given ticker data"""
2017-12-26 07:59:38 +00:00
return {pair: populate_indicators(parse_ticker_dataframe(pair_data))
for pair, pair_data in tickerdata.items()}
def make_testdata_path(datadir: str) -> str:
"""Return the path where testdata files are stored"""
return datadir or os.path.abspath(os.path.join(os.path.dirname(__file__),
'..', 'tests', 'testdata'))
def download_pairs(datadir, pairs: List[str], ticker_interval: int) -> bool:
"""For each pairs passed in parameters, download the ticker intervals"""
for pair in pairs:
try:
download_backtesting_testdata(datadir, pair=pair, interval=ticker_interval)
except BaseException:
logger.info('Failed to download the pair: "{pair}", Interval: {interval} min'.format(
pair=pair,
interval=ticker_interval,
))
return False
return True
2018-01-10 11:00:00 +00:00
def file_dump_json(filename, data):
with open(filename, "wt") as fp:
json.dump(data, fp)
# FIX: 20180110, suggest rename interval to tick_interval
def download_backtesting_testdata(datadir: str, pair: str, interval: int = 5) -> bool:
"""
Download the latest 1 and 5 ticker intervals from Bittrex for the pairs passed in parameters
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
:param pairs: list of pairs to download
:return: bool
"""
path = make_testdata_path(datadir)
logger.info('Download the pair: "{pair}", Interval: {interval} min'.format(
pair=pair,
interval=interval,
))
2018-03-11 19:24:24 +00:00
filepair = pair.replace("/", "_")
filename = os.path.join(path, '{pair}-{interval}.json'.format(
pair=filepair,
interval=interval,
))
if os.path.isfile(filename):
with open(filename, "rt") as fp:
data = json.load(fp)
logger.debug("Current Start: {}".format(data[1]['T']))
logger.debug("Current End: {}".format(data[-1:][0]['T']))
else:
data = []
logger.debug("Current Start: None")
logger.debug("Current End: None")
new_data = get_ticker_history(pair=pair, tick_interval=int(interval))
for row in new_data:
if row not in data:
data.append(row)
2018-03-11 19:24:24 +00:00
logger.debug("New Start: {}".format(
datetime.fromtimestamp(data[0][0]/1000.0).strftime('%Y-%m-%dT%H:%M:%S')))
logger.debug("New End: {}".format(
datetime.fromtimestamp(data[-1:][0][0]/1000.0).strftime('%Y-%m-%dT%H:%M:%S')))
data = sorted(data, key=lambda data: data[0])
2018-01-11 14:49:04 +00:00
misc.file_dump_json(filename, data)
return True