stable/tests/strategy/strats/legacy_strategy.py

89 lines
2.7 KiB
Python
Raw Normal View History

# --- Do not remove these libs ---
# Add your lib to import here
import talib.abstract as ta
2020-09-28 17:43:15 +00:00
from pandas import DataFrame
2020-09-28 17:43:15 +00:00
from freqtrade.strategy.interface import IStrategy
# --------------------------------
# This class is a sample. Feel free to customize it.
class TestStrategyLegacy(IStrategy):
"""
This is a test strategy using the legacy function headers, which will be
removed in a future update.
2019-08-27 04:41:07 +00:00
Please do not use this as a template, but refer to user_data/strategy/sample_strategy.py
for a uptodate version of this template.
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.10
2021-04-03 14:54:47 +00:00
# Optimal timeframe for the strategy
2020-06-02 08:11:50 +00:00
# Keep the legacy value here to test compatibility
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
"""
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 30) &
(dataframe['tema'] > dataframe['tema'].shift(1)) &
(dataframe['volume'] > 0)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 70) &
(dataframe['tema'] < dataframe['tema'].shift(1)) &
(dataframe['volume'] > 0)
),
'sell'] = 1
2021-08-08 09:38:34 +00:00
return dataframe