stable/user_data/strategies/sample_strategy.py

307 lines
12 KiB
Python
Raw Normal View History

2018-01-15 08:35:11 +00:00
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
2018-01-18 07:06:37 +00:00
import freqtrade.vendor.qtpylib.indicators as qtpylib
2018-11-25 21:02:59 +00:00
import numpy # noqa
2018-01-15 08:35:11 +00:00
2018-01-18 07:06:37 +00:00
# This class is a sample. Feel free to customize it.
2019-08-27 04:41:07 +00:00
class SampleStrategy(IStrategy):
2018-01-15 08:35:11 +00:00
"""
2019-08-28 04:07:18 +00:00
This is a sample strategy to inspire you.
2018-06-05 10:27:24 +00:00
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md
2018-01-18 07:06:37 +00:00
2018-01-15 08:35:11 +00:00
You can:
2018-07-25 06:54:01 +00:00
:return: a Dataframe with all mandatory indicators for the strategies
2018-01-15 08:35:11 +00:00
- Rename the class name (Do not forget to update class_name)
- Add any methods you want to build your strategy
- Add any lib you need to build your strategy
You must keep:
- the lib in the section "Do not remove these libs"
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
populate_sell_trend, hyperopt_space, buy_strategy_generator
"""
# Strategy interface version - allow new iterations of the strategy interface.
2019-08-26 17:44:33 +00:00
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2
2018-01-15 08:35:11 +00:00
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
2018-01-15 08:35:11 +00:00
minimal_roi = {
"60": 0.01,
"30": 0.02,
2018-01-15 08:35:11 +00:00
"0": 0.04
}
# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
2018-01-15 08:35:11 +00:00
stoploss = -0.10
# Trailing stoploss
trailing_stop = False
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
# Optimal ticker interval for the strategy.
ticker_interval = '5m'
# Run "populate_indicators()" only for new candle.
2019-05-29 12:17:09 +00:00
process_only_new_candles = False
2018-08-09 17:24:00 +00:00
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 20
# Optional order type mapping.
2018-11-17 09:26:15 +00:00
order_types = {
'buy': 'limit',
'sell': 'limit',
2018-11-25 18:03:28 +00:00
'stoploss': 'market',
'stoploss_on_exchange': False
2018-11-17 09:26:15 +00:00
}
# Optional order time in force.
2018-11-25 21:08:42 +00:00
order_time_in_force = {
2018-11-25 21:02:59 +00:00
'buy': 'gtc',
'sell': 'gtc'
}
def informative_pairs(self):
2019-01-21 19:22:27 +00:00
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
2019-01-21 19:22:27 +00:00
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
2018-01-15 08:35:11 +00:00
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
2018-07-25 06:54:01 +00:00
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
2018-07-25 06:54:01 +00:00
:return: a Dataframe with all mandatory indicators for the strategies
2018-01-15 08:35:11 +00:00
"""
2019-10-15 18:11:41 +00:00
# Momentum Indicators
2018-01-18 07:06:37 +00:00
# ------------------------------------
2019-10-15 17:38:23 +00:00
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
2019-10-15 18:11:41 +00:00
2018-01-18 07:06:37 +00:00
"""
2019-10-15 18:11:41 +00:00
# ADX
2019-10-15 19:35:14 +00:00
dataframe['adx'] = ta.ADX(dataframe)
2019-10-15 18:11:41 +00:00
2018-01-18 07:06:37 +00:00
# Awesome oscillator
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
dataframe['cci'] = ta.CCI(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# Minus Directional Indicator / Movement
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# ROC
dataframe['roc'] = ta.ROC(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Stoch RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
"""
# Overlap Studies
# ------------------------------------
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
"""
# EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
# SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
"""
# TEMA - Triple Exponential Moving Average
2018-01-15 08:35:11 +00:00
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
2018-01-18 07:06:37 +00:00
# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
"""
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100]
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# Dragonfly Doji: values [0, 100]
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# Piercing Line: values [0, 100]
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# Morningstar: values [0, 100]
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
"""
# Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100]
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# Gravestone Doji: values [0, 100]
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# Dark Cloud Cover: values [0, 100]
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# Evening Doji Star: values [0, 100]
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
"""
# Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100]
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# Engulfing: values [0, -100, 100]
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# Harami: values [0, -100, 100]
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# Three Outside Up/Down: values [0, -100, 100]
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""
# Chart type
# ------------------------------------
"""
# Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
"""
2019-10-15 18:11:41 +00:00
# Retrieve best bid and best ask from the orderbook
# ------------------------------------
"""
2019-08-26 17:44:33 +00:00
# first check if dataprovider is available
2019-06-06 15:25:58 +00:00
if self.dp:
if self.dp.runmode in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
"""
2019-08-26 17:44:33 +00:00
2018-01-15 08:35:11 +00:00
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
2018-01-15 08:35:11 +00:00
"""
Based on TA indicators, populates the buy signal for the given dataframe
2018-07-18 19:53:03 +00:00
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
2018-01-15 08:35:11 +00:00
:return: DataFrame with buy column
"""
dataframe.loc[
(
2019-10-15 17:38:23 +00:00
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
2019-10-14 18:13:34 +00:00
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
2019-02-17 14:55:47 +00:00
(dataframe['volume'] > 0) # Make sure Volume is not 0
2018-01-15 08:35:11 +00:00
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
2018-01-15 08:35:11 +00:00
"""
Based on TA indicators, populates the sell signal for the given dataframe
2018-07-18 19:53:03 +00:00
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
2018-01-15 08:35:11 +00:00
:return: DataFrame with buy column
"""
dataframe.loc[
(
2019-10-15 17:38:23 +00:00
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
2019-10-15 12:50:51 +00:00
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
2019-02-17 14:55:47 +00:00
(dataframe['volume'] > 0) # Make sure Volume is not 0
2018-01-15 08:35:11 +00:00
),
'sell'] = 1
return dataframe