2019-11-02 09:42:17 +00:00
|
|
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
|
|
|
2019-11-21 05:49:16 +00:00
|
|
|
# --- Do not remove these libs ---
|
2019-11-02 09:42:17 +00:00
|
|
|
from functools import reduce
|
|
|
|
from typing import Any, Callable, Dict, List
|
|
|
|
|
2019-11-16 13:47:44 +00:00
|
|
|
import numpy as np # noqa
|
2019-11-21 05:49:16 +00:00
|
|
|
import pandas as pd # noqa
|
|
|
|
from pandas import DataFrame
|
2019-11-02 09:42:17 +00:00
|
|
|
from skopt.space import Categorical, Dimension, Integer, Real # noqa
|
|
|
|
|
|
|
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
|
|
|
|
2019-11-16 13:47:44 +00:00
|
|
|
# --------------------------------
|
|
|
|
# Add your lib to import here
|
2019-11-21 05:49:16 +00:00
|
|
|
import talib.abstract as ta # noqa
|
2019-11-16 13:47:44 +00:00
|
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
|
|
|
2019-11-02 09:42:17 +00:00
|
|
|
|
|
|
|
class {{ hyperopt }}(IHyperOpt):
|
|
|
|
"""
|
|
|
|
This is a Hyperopt template to get you started.
|
|
|
|
|
2020-03-09 14:04:28 +00:00
|
|
|
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
|
2019-11-02 09:42:17 +00:00
|
|
|
|
|
|
|
You should:
|
|
|
|
- Add any lib you need to build your hyperopt.
|
|
|
|
|
|
|
|
You must keep:
|
|
|
|
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
|
|
|
|
|
2020-03-09 14:04:28 +00:00
|
|
|
The methods roi_space, generate_roi_table and stoploss_space are not required
|
|
|
|
and are provided by default.
|
|
|
|
However, you may override them if you need 'roi' and 'stoploss' spaces that
|
|
|
|
differ from the defaults offered by Freqtrade.
|
|
|
|
Sample implementation of these methods will be copied to `user_data/hyperopts` when
|
|
|
|
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
|
|
|
|
or is available online under the following URL:
|
|
|
|
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
|
2019-11-02 09:42:17 +00:00
|
|
|
"""
|
|
|
|
|
2021-03-14 18:49:46 +00:00
|
|
|
@staticmethod
|
|
|
|
def indicator_space() -> List[Dimension]:
|
|
|
|
"""
|
|
|
|
Define your Hyperopt space for searching buy strategy parameters.
|
|
|
|
"""
|
|
|
|
return [
|
|
|
|
{{ buy_space | indent(12) }}
|
|
|
|
]
|
|
|
|
|
2019-11-02 09:42:17 +00:00
|
|
|
@staticmethod
|
|
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
|
|
"""
|
|
|
|
Define the buy strategy parameters to be used by Hyperopt.
|
|
|
|
"""
|
|
|
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Buy strategy Hyperopt will build and use.
|
|
|
|
"""
|
|
|
|
conditions = []
|
|
|
|
|
|
|
|
# GUARDS AND TRENDS
|
2019-11-21 18:41:57 +00:00
|
|
|
{{ buy_guards | indent(12) }}
|
2019-11-02 09:42:17 +00:00
|
|
|
|
|
|
|
# TRIGGERS
|
|
|
|
if 'trigger' in params:
|
|
|
|
if params['trigger'] == 'bb_lower':
|
|
|
|
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
|
|
|
if params['trigger'] == 'macd_cross_signal':
|
|
|
|
conditions.append(qtpylib.crossed_above(
|
|
|
|
dataframe['macd'], dataframe['macdsignal']
|
|
|
|
))
|
|
|
|
if params['trigger'] == 'sar_reversal':
|
|
|
|
conditions.append(qtpylib.crossed_above(
|
|
|
|
dataframe['close'], dataframe['sar']
|
|
|
|
))
|
|
|
|
|
2020-03-10 15:05:33 +00:00
|
|
|
# Check that the candle had volume
|
|
|
|
conditions.append(dataframe['volume'] > 0)
|
|
|
|
|
2019-11-02 09:42:17 +00:00
|
|
|
if conditions:
|
|
|
|
dataframe.loc[
|
|
|
|
reduce(lambda x, y: x & y, conditions),
|
|
|
|
'buy'] = 1
|
|
|
|
|
|
|
|
return dataframe
|
|
|
|
|
|
|
|
return populate_buy_trend
|
|
|
|
|
|
|
|
@staticmethod
|
2021-03-14 18:49:46 +00:00
|
|
|
def sell_indicator_space() -> List[Dimension]:
|
2019-11-02 09:42:17 +00:00
|
|
|
"""
|
2021-03-14 18:49:46 +00:00
|
|
|
Define your Hyperopt space for searching sell strategy parameters.
|
2019-11-02 09:42:17 +00:00
|
|
|
"""
|
|
|
|
return [
|
2021-03-14 18:49:46 +00:00
|
|
|
{{ sell_space | indent(12) }}
|
2019-11-02 09:42:17 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
|
|
"""
|
|
|
|
Define the sell strategy parameters to be used by Hyperopt.
|
|
|
|
"""
|
|
|
|
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Sell strategy Hyperopt will build and use.
|
|
|
|
"""
|
|
|
|
conditions = []
|
|
|
|
|
|
|
|
# GUARDS AND TRENDS
|
2019-11-21 18:41:57 +00:00
|
|
|
{{ sell_guards | indent(12) }}
|
2019-11-02 09:42:17 +00:00
|
|
|
|
|
|
|
# TRIGGERS
|
|
|
|
if 'sell-trigger' in params:
|
|
|
|
if params['sell-trigger'] == 'sell-bb_upper':
|
|
|
|
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
|
|
|
if params['sell-trigger'] == 'sell-macd_cross_signal':
|
|
|
|
conditions.append(qtpylib.crossed_above(
|
|
|
|
dataframe['macdsignal'], dataframe['macd']
|
|
|
|
))
|
|
|
|
if params['sell-trigger'] == 'sell-sar_reversal':
|
|
|
|
conditions.append(qtpylib.crossed_above(
|
|
|
|
dataframe['sar'], dataframe['close']
|
|
|
|
))
|
|
|
|
|
2020-03-10 15:05:33 +00:00
|
|
|
# Check that the candle had volume
|
|
|
|
conditions.append(dataframe['volume'] > 0)
|
|
|
|
|
2019-11-02 09:42:17 +00:00
|
|
|
if conditions:
|
|
|
|
dataframe.loc[
|
|
|
|
reduce(lambda x, y: x & y, conditions),
|
|
|
|
'sell'] = 1
|
|
|
|
|
|
|
|
return dataframe
|
|
|
|
|
|
|
|
return populate_sell_trend
|
|
|
|
|