stable/freqtrade/optimize/hyperopt.py

551 lines
23 KiB
Python
Raw Normal View History

# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
"""
This module contains the hyperopt logic
"""
2019-11-06 18:33:15 +00:00
import locale
import logging
import sys
2019-08-15 18:39:04 +00:00
from collections import OrderedDict
from operator import itemgetter
2019-01-06 13:47:38 +00:00
from pathlib import Path
from pprint import pprint
2019-08-02 19:22:58 +00:00
from typing import Any, Dict, List, Optional
2019-08-15 18:39:04 +00:00
import rapidjson
2019-08-09 11:48:57 +00:00
from colorama import Fore, Style
2019-11-06 18:33:15 +00:00
from colorama import init as colorama_init
from joblib import (Parallel, cpu_count, delayed, dump, load,
wrap_non_picklable_objects)
2019-01-06 13:47:38 +00:00
from pandas import DataFrame
2018-06-19 06:09:54 +00:00
from skopt import Optimizer
from skopt.space import Dimension
2018-06-18 19:40:36 +00:00
2019-12-05 20:29:31 +00:00
from freqtrade import OperationalException
2019-10-27 09:56:38 +00:00
from freqtrade.data.history import get_timeframe, trim_dataframe
from freqtrade.misc import plural, round_dict
2018-03-02 15:22:00 +00:00
from freqtrade.optimize.backtesting import Backtesting
2019-08-14 10:25:49 +00:00
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F4
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F4
2019-11-06 18:33:15 +00:00
from freqtrade.resolvers.hyperopt_resolver import (HyperOptLossResolver,
HyperOptResolver)
2018-03-25 19:37:14 +00:00
logger = logging.getLogger(__name__)
2019-05-10 07:54:44 +00:00
INITIAL_POINTS = 30
# Keep no more than 2*SKOPT_MODELS_MAX_NUM models
# in the skopt models list
SKOPT_MODELS_MAX_NUM = 10
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
2018-03-25 19:37:14 +00:00
class Hyperopt:
"""
Hyperopt class, this class contains all the logic to run a hyperopt simulation
To run a backtest:
hyperopt = Hyperopt(config)
hyperopt.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
2019-09-18 19:57:17 +00:00
self.backtesting = Backtesting(self.config)
2019-07-16 04:27:23 +00:00
self.custom_hyperoptloss = HyperOptLossResolver(self.config).hyperoptloss
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
2019-07-31 05:07:46 +00:00
self.trials_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
self.tickerdata_pickle = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
self.total_epochs = config.get('epochs', 0)
self.current_best_loss = 100
2019-07-16 03:50:27 +00:00
if not self.config.get('hyperopt_continue'):
self.clean_hyperopt()
2019-07-16 03:50:27 +00:00
else:
logger.info("Continuing on previous hyperopt results.")
self.num_trials_saved = 0
# Previous evaluations
2018-06-30 06:54:31 +00:00
self.trials: List = []
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
2019-09-16 18:22:07 +00:00
if hasattr(self.custom_hyperopt, 'populate_indicators'):
self.backtesting.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
2019-09-18 19:57:17 +00:00
self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.populate_buy_trend # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
2019-09-18 19:57:17 +00:00
self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.populate_sell_trend # type: ignore
2019-08-02 19:22:58 +00:00
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
self.max_open_trades = self.config['max_open_trades']
else:
logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
self.max_open_trades = 0
2019-09-25 00:41:22 +00:00
self.position_stacking = self.config.get('position_stacking', False)
2019-08-01 20:57:26 +00:00
if self.has_space('sell'):
# Make sure use_sell_signal is enabled
if 'ask_strategy' not in self.config:
self.config['ask_strategy'] = {}
self.config['ask_strategy']['use_sell_signal'] = True
2019-08-01 20:57:26 +00:00
self.print_all = self.config.get('print_all', False)
self.print_colorized = self.config.get('print_colorized', False)
self.print_json = self.config.get('print_json', False)
2019-07-21 14:07:06 +00:00
@staticmethod
def get_lock_filename(config) -> str:
return str(config['user_data_dir'] / 'hyperopt.lock')
def clean_hyperopt(self):
"""
Remove hyperopt pickle files to restart hyperopt.
"""
2019-07-21 14:07:06 +00:00
for f in [self.tickerdata_pickle, self.trials_file]:
p = Path(f)
if p.is_file():
logger.info(f"Removing `{p}`.")
p.unlink()
def _get_params_dict(self, raw_params: List[Any]) -> Dict:
2019-09-16 18:22:07 +00:00
dimensions: List[Dimension] = self.dimensions
2019-09-16 18:22:07 +00:00
2018-06-19 06:09:54 +00:00
# Ensure the number of dimensions match
# the number of parameters in the list.
if len(raw_params) != len(dimensions):
raise ValueError('Mismatch in number of search-space dimensions.')
2018-06-19 06:09:54 +00:00
# Return a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters.
return {d.name: v for d, v in zip(dimensions, raw_params)}
2018-06-19 06:09:54 +00:00
2019-11-23 08:32:33 +00:00
def save_trials(self, final: bool = False) -> None:
"""
Save hyperopt trials to file
"""
2019-11-23 08:32:33 +00:00
num_trials = len(self.trials)
if num_trials > self.num_trials_saved:
logger.info(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
2018-07-03 19:51:48 +00:00
dump(self.trials, self.trials_file)
2019-11-23 08:32:33 +00:00
self.num_trials_saved = num_trials
if final:
logger.info(f"{num_trials} {plural(num_trials, 'epoch')} "
f"saved to '{self.trials_file}'.")
@staticmethod
def _read_trials(trials_file) -> List:
"""
Read hyperopt trials file
"""
logger.info("Reading Trials from '%s'", trials_file)
trials = load(trials_file)
return trials
def _get_params_details(self, params: Dict) -> Dict:
"""
Return the params for each space
"""
result: Dict = {}
2019-11-23 08:32:33 +00:00
if self.has_space('buy'):
result['buy'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('buy')}
if self.has_space('sell'):
result['sell'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('sell')}
if self.has_space('roi'):
result['roi'] = self.custom_hyperopt.generate_roi_table(params)
if self.has_space('stoploss'):
result['stoploss'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('stoploss')}
2019-12-04 22:08:38 +00:00
if self.has_space('trailing'):
result['trailing'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('trailing')}
2019-08-15 18:39:04 +00:00
return result
2019-12-05 20:29:31 +00:00
@staticmethod
def print_epoch_details(results, total_epochs, print_json: bool,
no_header: bool = False, header_str: str = None) -> None:
"""
Display details of the hyperopt result
"""
2019-11-27 19:52:43 +00:00
params = results.get('params_details', {})
# Default header string
if header_str is None:
header_str = "Best result"
if not no_header:
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
print(f"\n{header_str}:\n\n{explanation_str}\n")
if print_json:
2019-08-15 20:13:46 +00:00
result_dict: Dict = {}
2019-12-01 13:15:00 +00:00
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
Hyperopt._params_update_for_json(result_dict, params, s)
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
else:
Hyperopt._params_pretty_print(params, 'buy', "Buy hyperspace params:")
Hyperopt._params_pretty_print(params, 'sell', "Sell hyperspace params:")
Hyperopt._params_pretty_print(params, 'roi', "ROI table:")
Hyperopt._params_pretty_print(params, 'stoploss', "Stoploss:")
2019-12-04 22:08:38 +00:00
Hyperopt._params_pretty_print(params, 'trailing', "Trailing stop:")
@staticmethod
def _params_update_for_json(result_dict, params, space: str):
if space in params:
space_params = Hyperopt._space_params(params, space)
if space in ['buy', 'sell']:
result_dict.setdefault('params', {}).update(space_params)
elif space == 'roi':
2019-08-15 18:39:04 +00:00
# Convert keys in min_roi dict to strings because
# rapidjson cannot dump dicts with integer keys...
# OrderedDict is used to keep the numeric order of the items
# in the dict.
2019-08-15 20:13:46 +00:00
result_dict['minimal_roi'] = OrderedDict(
(str(k), v) for k, v in space_params.items()
2019-08-15 20:13:46 +00:00
)
2019-12-01 13:15:00 +00:00
else: # 'stoploss', 'trailing'
result_dict.update(space_params)
@staticmethod
def _params_pretty_print(params, space: str, header: str):
if space in params:
space_params = Hyperopt._space_params(params, space, 5)
if space == 'stoploss':
print(header, space_params.get('stoploss'))
else:
print(header)
pprint(space_params, indent=4)
@staticmethod
def _space_params(params, space: str, r: int = None) -> Dict:
d = params[space]
# Round floats to `r` digits after the decimal point if requested
return round_dict(d, r) if r else d
@staticmethod
def is_best_loss(results, current_best_loss) -> bool:
return results['loss'] < current_best_loss
2019-11-23 08:32:33 +00:00
def print_results(self, results) -> None:
"""
Log results if it is better than any previous evaluation
"""
is_best = results['is_best']
if not self.print_all:
# Print '\n' after each 100th epoch to separate dots from the log messages.
# Otherwise output is messy on a terminal.
2019-11-23 08:51:52 +00:00
print('.', end='' if results['current_epoch'] % 100 != 0 else None) # type: ignore
2019-11-23 08:32:33 +00:00
sys.stdout.flush()
if self.print_all or is_best:
if not self.print_all:
# Separate the results explanation string from dots
print("\n")
self.print_results_explanation(results, self.total_epochs, self.print_all,
self.print_colorized)
@staticmethod
def print_results_explanation(results, total_epochs, highlight_best: bool,
print_colorized: bool) -> None:
"""
Log results explanation string
"""
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
# Colorize output
if print_colorized:
if results['total_profit'] > 0:
explanation_str = Fore.GREEN + explanation_str
if highlight_best and results['is_best']:
explanation_str = Style.BRIGHT + explanation_str
print(explanation_str)
@staticmethod
def _format_explanation_string(results, total_epochs) -> str:
return (("*" if results['is_initial_point'] else " ") +
f"{results['current_epoch']:5d}/{total_epochs}: " +
f"{results['results_explanation']} " +
f"Objective: {results['loss']:.5f}")
2018-03-17 21:43:36 +00:00
def has_space(self, space: str) -> bool:
"""
2019-11-07 22:55:14 +00:00
Tell if the space value is contained in the configuration
"""
2019-11-07 22:55:14 +00:00
# The 'trailing' space is not included in the 'default' set of spaces
if space == 'trailing':
return any(s in self.config['spaces'] for s in [space, 'all'])
else:
return any(s in self.config['spaces'] for s in [space, 'all', 'default'])
2019-08-02 19:22:58 +00:00
def hyperopt_space(self, space: Optional[str] = None) -> List[Dimension]:
"""
2019-08-03 07:20:20 +00:00
Return the dimensions in the hyperoptimization space.
:param space: Defines hyperspace to return dimensions for.
If None, then the self.has_space() will be used to return dimensions
2019-08-02 19:22:58 +00:00
for all hyperspaces used.
"""
spaces: List[Dimension] = []
2019-11-07 22:55:14 +00:00
2019-08-02 19:22:58 +00:00
if space == 'buy' or (space is None and self.has_space('buy')):
2019-08-01 20:57:26 +00:00
logger.debug("Hyperopt has 'buy' space")
2018-11-07 18:46:04 +00:00
spaces += self.custom_hyperopt.indicator_space()
2019-11-07 22:55:14 +00:00
2019-08-02 19:22:58 +00:00
if space == 'sell' or (space is None and self.has_space('sell')):
2019-08-01 20:57:26 +00:00
logger.debug("Hyperopt has 'sell' space")
2019-01-06 09:16:30 +00:00
spaces += self.custom_hyperopt.sell_indicator_space()
2019-11-07 22:55:14 +00:00
2019-08-02 19:22:58 +00:00
if space == 'roi' or (space is None and self.has_space('roi')):
2019-08-01 20:57:26 +00:00
logger.debug("Hyperopt has 'roi' space")
2018-11-07 18:46:04 +00:00
spaces += self.custom_hyperopt.roi_space()
2019-11-07 22:55:14 +00:00
2019-08-02 19:22:58 +00:00
if space == 'stoploss' or (space is None and self.has_space('stoploss')):
2019-08-01 20:57:26 +00:00
logger.debug("Hyperopt has 'stoploss' space")
2018-11-07 18:46:04 +00:00
spaces += self.custom_hyperopt.stoploss_space()
2019-11-07 22:55:14 +00:00
if space == 'trailing' or (space is None and self.has_space('trailing')):
logger.debug("Hyperopt has 'trailing' space")
spaces += self.custom_hyperopt.trailing_space()
return spaces
2017-12-26 08:08:10 +00:00
def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict:
"""
Used Optimize function. Called once per epoch to optimize whatever is configured.
Keep this function as optimized as possible!
"""
params_dict = self._get_params_dict(raw_params)
params_details = self._get_params_details(params_dict)
if self.has_space('roi'):
2019-09-18 19:57:17 +00:00
self.backtesting.strategy.minimal_roi = \
self.custom_hyperopt.generate_roi_table(params_dict)
if self.has_space('buy'):
2019-09-18 19:57:17 +00:00
self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.buy_strategy_generator(params_dict)
2019-01-06 09:16:30 +00:00
if self.has_space('sell'):
2019-09-18 19:57:17 +00:00
self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.sell_strategy_generator(params_dict)
2019-01-06 09:16:30 +00:00
if self.has_space('stoploss'):
self.backtesting.strategy.stoploss = params_dict['stoploss']
2019-11-07 22:55:14 +00:00
if self.has_space('trailing'):
2019-12-04 22:08:38 +00:00
self.backtesting.strategy.trailing_stop = params_dict['trailing_stop']
self.backtesting.strategy.trailing_stop_positive = \
2019-12-04 22:11:06 +00:00
params_dict['trailing_stop_positive']
2019-11-07 22:55:14 +00:00
self.backtesting.strategy.trailing_stop_positive_offset = \
2019-12-04 22:11:06 +00:00
params_dict['trailing_stop_positive_offset']
2019-11-07 22:55:14 +00:00
self.backtesting.strategy.trailing_only_offset_is_reached = \
2019-12-04 22:11:06 +00:00
params_dict['trailing_only_offset_is_reached']
2019-11-07 22:55:14 +00:00
2019-07-21 14:07:06 +00:00
processed = load(self.tickerdata_pickle)
2019-07-14 17:56:17 +00:00
2018-11-04 12:43:09 +00:00
min_date, max_date = get_timeframe(processed)
2019-07-14 17:56:17 +00:00
backtesting_results = self.backtesting.backtest(
{
'stake_amount': self.config['stake_amount'],
'processed': processed,
'max_open_trades': self.max_open_trades,
2019-07-16 03:50:27 +00:00
'position_stacking': self.position_stacking,
2018-10-16 17:35:16 +00:00
'start_date': min_date,
'end_date': max_date,
}
)
2019-11-27 19:52:43 +00:00
return self._get_results_dict(backtesting_results, min_date, max_date,
params_dict, params_details)
def _get_results_dict(self, backtesting_results, min_date, max_date,
params_dict, params_details):
results_metrics = self._calculate_results_metrics(backtesting_results)
results_explanation = self._format_results_explanation_string(results_metrics)
trade_count = results_metrics['trade_count']
total_profit = results_metrics['total_profit']
# If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value)
2019-05-01 12:27:58 +00:00
# in order to cast this hyperspace point away from optimization
# path. We do not want to optimize 'hodl' strategies.
loss: float = MAX_LOSS
if trade_count >= self.config['hyperopt_min_trades']:
loss = self.calculate_loss(results=backtesting_results, trade_count=trade_count,
min_date=min_date.datetime, max_date=max_date.datetime)
2018-06-19 18:57:42 +00:00
return {
'loss': loss,
'params_dict': params_dict,
'params_details': params_details,
'results_metrics': results_metrics,
'results_explanation': results_explanation,
2019-08-03 16:09:42 +00:00
'total_profit': total_profit,
2018-06-19 18:57:42 +00:00
}
def _calculate_results_metrics(self, backtesting_results: DataFrame) -> Dict:
return {
'trade_count': len(backtesting_results.index),
'avg_profit': backtesting_results.profit_percent.mean() * 100.0,
'total_profit': backtesting_results.profit_abs.sum(),
'profit': backtesting_results.profit_percent.sum() * 100.0,
'duration': backtesting_results.trade_duration.mean(),
}
def _format_results_explanation_string(self, results_metrics: Dict) -> str:
"""
Return the formatted results explanation in a string
"""
stake_cur = self.config['stake_currency']
return (f"{results_metrics['trade_count']:6d} trades. "
f"Avg profit {results_metrics['avg_profit']: 6.2f}%. "
f"Total profit {results_metrics['total_profit']: 11.8f} {stake_cur} "
f"({results_metrics['profit']: 7.2f}\N{GREEK CAPITAL LETTER SIGMA}%). "
f"Avg duration {results_metrics['duration']:5.1f} mins."
2019-11-06 18:33:15 +00:00
).encode(locale.getpreferredencoding(), 'replace').decode('utf-8')
def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer:
2018-06-24 12:27:53 +00:00
return Optimizer(
2019-09-16 18:22:07 +00:00
dimensions,
2018-06-24 12:27:53 +00:00
base_estimator="ET",
acq_optimizer="auto",
2019-05-10 07:54:44 +00:00
n_initial_points=INITIAL_POINTS,
acq_optimizer_kwargs={'n_jobs': cpu_count},
random_state=self.config.get('hyperopt_random_state', None),
2018-06-24 12:27:53 +00:00
)
def fix_optimizer_models_list(self):
"""
WORKAROUND: Since skopt is not actively supported, this resolves problems with skopt
memory usage, see also: https://github.com/scikit-optimize/scikit-optimize/pull/746
This may cease working when skopt updates if implementation of this intrinsic
part changes.
"""
n = len(self.opt.models) - SKOPT_MODELS_MAX_NUM
# Keep no more than 2*SKOPT_MODELS_MAX_NUM models in the skopt models list,
2019-09-23 10:25:31 +00:00
# remove the old ones. These are actually of no use, the current model
# from the estimator is the only one used in the skopt optimizer.
# Freqtrade code also does not inspect details of the models.
if n >= SKOPT_MODELS_MAX_NUM:
logger.debug(f"Fixing skopt models list, removing {n} old items...")
del self.opt.models[0:n]
def run_optimizer_parallel(self, parallel, asked, i) -> List:
2018-11-20 16:43:49 +00:00
return parallel(delayed(
wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked)
2018-06-24 12:27:53 +00:00
@staticmethod
def load_previous_results(trials_file) -> List:
"""
Load data for epochs from the file if we have one
"""
trials: List = []
if trials_file.is_file() and trials_file.stat().st_size > 0:
trials = Hyperopt._read_trials(trials_file)
2019-12-05 20:29:31 +00:00
if trials[0].get('is_best') is None:
raise OperationalException(
"The file with Hyperopt results is incompatible with this version "
"of Freqtrade and cannot be loaded.")
logger.info(f"Loaded {len(trials)} previous evaluations from disk.")
return trials
2018-03-17 21:43:36 +00:00
def start(self) -> None:
data, timerange = self.backtesting.load_bt_data()
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = get_timeframe(data)
logger.info(
'Hyperopting with data from %s up to %s (%s days)..',
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
)
2019-07-21 14:07:06 +00:00
dump(preprocessed, self.tickerdata_pickle)
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange = None # type: ignore
self.trials = self.load_previous_results(self.trials_file)
cpus = cpu_count()
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
config_jobs = self.config.get('hyperopt_jobs', -1)
logger.info(f'Number of parallel jobs set as: {config_jobs}')
2018-06-21 11:59:36 +00:00
self.dimensions: List[Dimension] = self.hyperopt_space()
2019-09-16 18:22:07 +00:00
self.opt = self.get_optimizer(self.dimensions, config_jobs)
if self.print_colorized:
2019-08-09 11:48:57 +00:00
colorama_init(autoreset=True)
try:
with Parallel(n_jobs=config_jobs) as parallel:
jobs = parallel._effective_n_jobs()
logger.info(f'Effective number of parallel workers used: {jobs}')
EVALS = max(self.total_epochs // jobs, 1)
2018-07-03 18:54:32 +00:00
for i in range(EVALS):
2019-09-16 18:22:07 +00:00
asked = self.opt.ask(n_points=jobs)
f_val = self.run_optimizer_parallel(parallel, asked, i)
2019-09-16 18:22:07 +00:00
self.opt.tell(asked, [v['loss'] for v in f_val])
self.fix_optimizer_models_list()
for j in range(jobs):
# Use human-friendly indexes here (starting from 1)
2019-11-23 08:32:33 +00:00
current = i * jobs + j + 1
val = f_val[j]
val['current_epoch'] = current
2019-11-23 08:32:33 +00:00
val['is_initial_point'] = current <= INITIAL_POINTS
logger.debug(f"Optimizer epoch evaluated: {val}")
is_best = self.is_best_loss(val, self.current_best_loss)
# This value is assigned here and not in the optimization method
# to keep proper order in the list of results. That's because
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
self.print_results(val)
if is_best:
self.current_best_loss = val['loss']
self.trials.append(val)
# Save results after each best epoch and every 100 epochs
2019-11-23 08:32:33 +00:00
if is_best or current % 100 == 0:
self.save_trials()
except KeyboardInterrupt:
print('User interrupted..')
2019-11-23 08:32:33 +00:00
self.save_trials(final=True)
if self.trials:
sorted_trials = sorted(self.trials, key=itemgetter('loss'))
results = sorted_trials[0]
self.print_epoch_details(results, self.total_epochs, self.print_json)
else:
# This is printed when Ctrl+C is pressed quickly, before first epochs have
# a chance to be evaluated.
print("No epochs evaluated yet, no best result.")