2017-11-18 07:45:01 +00:00
|
|
|
# pragma pylint: disable=missing-docstring,W0212
|
2017-11-25 00:04:11 +00:00
|
|
|
|
|
|
|
|
2017-11-25 00:22:36 +00:00
|
|
|
import json
|
2017-11-25 01:04:37 +00:00
|
|
|
import logging
|
2017-12-01 23:32:23 +00:00
|
|
|
import sys
|
2017-10-19 14:12:49 +00:00
|
|
|
from functools import reduce
|
2017-10-28 12:22:15 +00:00
|
|
|
from math import exp
|
2017-10-30 19:41:36 +00:00
|
|
|
from operator import itemgetter
|
2017-10-19 14:12:49 +00:00
|
|
|
|
2017-10-28 12:22:15 +00:00
|
|
|
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
|
2017-11-25 01:04:37 +00:00
|
|
|
from hyperopt.mongoexp import MongoTrials
|
2017-10-30 19:41:36 +00:00
|
|
|
from pandas import DataFrame
|
2017-12-23 07:21:04 +00:00
|
|
|
import numpy as np
|
2017-10-19 14:12:49 +00:00
|
|
|
|
2017-11-25 00:04:11 +00:00
|
|
|
from freqtrade import exchange, optimize
|
2017-11-17 16:54:31 +00:00
|
|
|
from freqtrade.exchange import Bittrex
|
2017-12-16 14:42:28 +00:00
|
|
|
from freqtrade.misc import load_config
|
2017-11-25 00:04:11 +00:00
|
|
|
from freqtrade.optimize.backtesting import backtest
|
2017-12-21 07:31:26 +00:00
|
|
|
from freqtrade.optimize.hyperopt_conf import hyperopt_optimize_conf
|
2017-10-30 19:41:36 +00:00
|
|
|
from freqtrade.vendor.qtpylib.indicators import crossed_above
|
2017-10-19 14:12:49 +00:00
|
|
|
|
2017-11-25 02:28:52 +00:00
|
|
|
# Remove noisy log messages
|
|
|
|
logging.getLogger('hyperopt.mongoexp').setLevel(logging.WARNING)
|
2017-12-01 22:21:46 +00:00
|
|
|
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
|
2017-11-25 02:28:52 +00:00
|
|
|
|
2017-11-25 01:04:37 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2017-10-28 12:22:15 +00:00
|
|
|
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
|
2017-11-18 08:24:18 +00:00
|
|
|
TARGET_TRADES = 1100
|
2017-11-25 02:28:52 +00:00
|
|
|
TOTAL_TRIES = None
|
2017-11-25 00:12:44 +00:00
|
|
|
_CURRENT_TRIES = 0
|
2017-10-28 12:22:15 +00:00
|
|
|
|
2017-12-22 14:53:31 +00:00
|
|
|
TOTAL_PROFIT_TO_BEAT = 0
|
|
|
|
AVG_PROFIT_TO_BEAT = 0
|
|
|
|
AVG_DURATION_TO_BEAT = 100
|
2017-12-01 22:21:46 +00:00
|
|
|
|
2017-12-23 16:38:16 +00:00
|
|
|
# this is expexted avg profit * expected trade count
|
|
|
|
# for example 3.5%, 1100 trades, EXPECTED_MAX_PROFIT = 3.85
|
|
|
|
EXPECTED_MAX_PROFIT = 3.85
|
|
|
|
|
2017-11-25 00:04:11 +00:00
|
|
|
# Configuration and data used by hyperopt
|
2017-12-21 07:31:26 +00:00
|
|
|
PROCESSED = optimize.preprocess(optimize.load_data())
|
|
|
|
OPTIMIZE_CONFIG = hyperopt_optimize_conf()
|
2017-11-25 00:04:11 +00:00
|
|
|
|
2017-11-25 01:04:37 +00:00
|
|
|
# Monkey patch config
|
2017-12-16 02:39:47 +00:00
|
|
|
from freqtrade import main # noqa
|
2017-11-25 01:04:37 +00:00
|
|
|
main._CONF = OPTIMIZE_CONFIG
|
|
|
|
|
|
|
|
|
2017-11-25 00:04:11 +00:00
|
|
|
SPACE = {
|
|
|
|
'mfi': hp.choice('mfi', [
|
|
|
|
{'enabled': False},
|
|
|
|
{'enabled': True, 'value': hp.quniform('mfi-value', 5, 25, 1)}
|
|
|
|
]),
|
|
|
|
'fastd': hp.choice('fastd', [
|
|
|
|
{'enabled': False},
|
|
|
|
{'enabled': True, 'value': hp.quniform('fastd-value', 10, 50, 1)}
|
|
|
|
]),
|
|
|
|
'adx': hp.choice('adx', [
|
|
|
|
{'enabled': False},
|
|
|
|
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
|
|
|
|
]),
|
|
|
|
'rsi': hp.choice('rsi', [
|
|
|
|
{'enabled': False},
|
|
|
|
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
|
|
|
|
]),
|
|
|
|
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
|
|
|
|
{'enabled': False},
|
|
|
|
{'enabled': True}
|
|
|
|
]),
|
|
|
|
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
|
|
|
|
{'enabled': False},
|
|
|
|
{'enabled': True}
|
|
|
|
]),
|
|
|
|
'over_sar': hp.choice('over_sar', [
|
|
|
|
{'enabled': False},
|
|
|
|
{'enabled': True}
|
|
|
|
]),
|
|
|
|
'green_candle': hp.choice('green_candle', [
|
|
|
|
{'enabled': False},
|
|
|
|
{'enabled': True}
|
|
|
|
]),
|
|
|
|
'uptrend_sma': hp.choice('uptrend_sma', [
|
|
|
|
{'enabled': False},
|
|
|
|
{'enabled': True}
|
|
|
|
]),
|
|
|
|
'trigger': hp.choice('trigger', [
|
|
|
|
{'type': 'lower_bb'},
|
|
|
|
{'type': 'faststoch10'},
|
|
|
|
{'type': 'ao_cross_zero'},
|
|
|
|
{'type': 'ema5_cross_ema10'},
|
|
|
|
{'type': 'macd_cross_signal'},
|
|
|
|
{'type': 'sar_reversal'},
|
|
|
|
{'type': 'stochf_cross'},
|
|
|
|
{'type': 'ht_sine'},
|
|
|
|
]),
|
|
|
|
}
|
|
|
|
|
2017-12-16 02:39:47 +00:00
|
|
|
|
2017-12-01 23:32:23 +00:00
|
|
|
def log_results(results):
|
|
|
|
"if results is better than _TO_BEAT show it"
|
|
|
|
|
|
|
|
current_try = results['current_tries']
|
|
|
|
total_tries = results['total_tries']
|
|
|
|
result = results['result']
|
2017-12-22 14:54:04 +00:00
|
|
|
profit = results['total_profit']
|
2017-12-01 23:32:23 +00:00
|
|
|
|
|
|
|
if profit >= TOTAL_PROFIT_TO_BEAT:
|
2017-12-22 14:56:59 +00:00
|
|
|
logger.info('\n{:5d}/{}: {}'.format(current_try, total_tries, result))
|
2017-12-01 23:32:23 +00:00
|
|
|
else:
|
|
|
|
print('.', end='')
|
|
|
|
sys.stdout.flush()
|
2017-11-25 00:04:11 +00:00
|
|
|
|
2017-12-16 02:39:47 +00:00
|
|
|
|
2017-11-25 00:04:11 +00:00
|
|
|
def optimizer(params):
|
2017-11-25 00:12:44 +00:00
|
|
|
global _CURRENT_TRIES
|
|
|
|
|
2017-11-25 00:04:11 +00:00
|
|
|
from freqtrade.optimize import backtesting
|
|
|
|
backtesting.populate_buy_trend = buy_strategy_generator(params)
|
|
|
|
|
2017-12-23 15:26:22 +00:00
|
|
|
results = backtest(OPTIMIZE_CONFIG['stake_amount'], PROCESSED)
|
2017-11-25 00:04:11 +00:00
|
|
|
|
|
|
|
result = format_results(results)
|
|
|
|
|
2017-12-23 16:38:16 +00:00
|
|
|
total_profit = results.profit_percent.sum()
|
2017-11-25 00:04:11 +00:00
|
|
|
trade_count = len(results.index)
|
|
|
|
|
|
|
|
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
|
2017-12-23 16:38:16 +00:00
|
|
|
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
2017-11-25 00:04:11 +00:00
|
|
|
|
2017-11-25 00:12:44 +00:00
|
|
|
_CURRENT_TRIES += 1
|
2017-12-01 23:32:23 +00:00
|
|
|
|
|
|
|
result_data = {
|
|
|
|
'trade_count': trade_count,
|
|
|
|
'total_profit': total_profit,
|
|
|
|
'trade_loss': trade_loss,
|
|
|
|
'profit_loss': profit_loss,
|
2017-12-19 05:58:02 +00:00
|
|
|
'avg_profit': results.profit_percent.mean() * 100.0,
|
2017-12-01 23:32:23 +00:00
|
|
|
'avg_duration': results.duration.mean() * 5,
|
|
|
|
'current_tries': _CURRENT_TRIES,
|
|
|
|
'total_tries': TOTAL_TRIES,
|
|
|
|
'result': result,
|
|
|
|
'results': results
|
2017-12-18 16:36:00 +00:00
|
|
|
}
|
2017-12-01 23:32:23 +00:00
|
|
|
log_results(result_data)
|
2017-11-25 00:04:11 +00:00
|
|
|
|
|
|
|
return {
|
|
|
|
'loss': trade_loss + profit_loss,
|
|
|
|
'status': STATUS_OK,
|
2017-12-23 07:21:04 +00:00
|
|
|
'result': result,
|
|
|
|
'total_profit': total_profit,
|
|
|
|
'avg_profit': result_data['avg_profit'],
|
2017-11-25 00:04:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def format_results(results: DataFrame):
|
|
|
|
return ('Made {:6d} buys. Average profit {: 5.2f}%. '
|
2017-12-23 16:37:42 +00:00
|
|
|
'Total profit was {: 11.8f} BTC. Average duration {:5.1f} mins.').format(
|
2017-11-25 00:04:11 +00:00
|
|
|
len(results.index),
|
2017-12-19 05:58:02 +00:00
|
|
|
results.profit_percent.mean() * 100.0,
|
|
|
|
results.profit_BTC.sum(),
|
2017-11-25 00:04:11 +00:00
|
|
|
results.duration.mean() * 5,
|
2017-12-18 16:36:00 +00:00
|
|
|
)
|
2017-11-25 00:04:11 +00:00
|
|
|
|
2017-11-14 23:11:46 +00:00
|
|
|
|
2017-12-23 07:21:04 +00:00
|
|
|
def filter_nan(result, filter_key):
|
|
|
|
return [r for r in result if not np.isnan(r[filter_key])]
|
|
|
|
|
|
|
|
|
2017-10-19 14:12:49 +00:00
|
|
|
def buy_strategy_generator(params):
|
|
|
|
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
|
|
|
conditions = []
|
2017-10-21 07:26:38 +00:00
|
|
|
# GUARDS AND TRENDS
|
2017-10-28 13:52:26 +00:00
|
|
|
if params['uptrend_long_ema']['enabled']:
|
|
|
|
conditions.append(dataframe['ema50'] > dataframe['ema100'])
|
2017-11-12 06:45:32 +00:00
|
|
|
if params['uptrend_short_ema']['enabled']:
|
|
|
|
conditions.append(dataframe['ema5'] > dataframe['ema10'])
|
2017-10-19 14:12:49 +00:00
|
|
|
if params['mfi']['enabled']:
|
|
|
|
conditions.append(dataframe['mfi'] < params['mfi']['value'])
|
|
|
|
if params['fastd']['enabled']:
|
|
|
|
conditions.append(dataframe['fastd'] < params['fastd']['value'])
|
|
|
|
if params['adx']['enabled']:
|
|
|
|
conditions.append(dataframe['adx'] > params['adx']['value'])
|
2017-10-28 13:21:07 +00:00
|
|
|
if params['rsi']['enabled']:
|
|
|
|
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
2017-10-20 09:56:44 +00:00
|
|
|
if params['over_sar']['enabled']:
|
|
|
|
conditions.append(dataframe['close'] > dataframe['sar'])
|
2017-11-11 07:35:04 +00:00
|
|
|
if params['green_candle']['enabled']:
|
|
|
|
conditions.append(dataframe['close'] > dataframe['open'])
|
2017-10-20 15:29:38 +00:00
|
|
|
if params['uptrend_sma']['enabled']:
|
|
|
|
prevsma = dataframe['sma'].shift(1)
|
|
|
|
conditions.append(dataframe['sma'] > prevsma)
|
2017-10-21 07:26:38 +00:00
|
|
|
|
|
|
|
# TRIGGERS
|
|
|
|
triggers = {
|
|
|
|
'lower_bb': dataframe['tema'] <= dataframe['blower'],
|
2017-11-11 07:26:05 +00:00
|
|
|
'faststoch10': (crossed_above(dataframe['fastd'], 10.0)),
|
2017-10-25 15:24:20 +00:00
|
|
|
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
|
2017-10-28 13:40:21 +00:00
|
|
|
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
|
2017-10-28 13:52:49 +00:00
|
|
|
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
|
2017-11-11 06:32:35 +00:00
|
|
|
'sar_reversal': (crossed_above(dataframe['close'], dataframe['sar'])),
|
2017-11-12 06:38:52 +00:00
|
|
|
'stochf_cross': (crossed_above(dataframe['fastk'], dataframe['fastd'])),
|
2017-11-12 07:13:54 +00:00
|
|
|
'ht_sine': (crossed_above(dataframe['htleadsine'], dataframe['htsine'])),
|
2017-10-21 07:26:38 +00:00
|
|
|
}
|
|
|
|
conditions.append(triggers.get(params['trigger']['type']))
|
|
|
|
|
2017-10-19 14:12:49 +00:00
|
|
|
dataframe.loc[
|
|
|
|
reduce(lambda x, y: x & y, conditions),
|
|
|
|
'buy'] = 1
|
|
|
|
|
|
|
|
return dataframe
|
|
|
|
return populate_buy_trend
|
|
|
|
|
2017-10-30 23:36:35 +00:00
|
|
|
|
2017-11-25 00:04:11 +00:00
|
|
|
def start(args):
|
2017-12-16 14:42:28 +00:00
|
|
|
global TOTAL_TRIES, PROCESSED
|
2017-11-25 00:12:44 +00:00
|
|
|
TOTAL_TRIES = args.epochs
|
|
|
|
|
2017-11-17 16:54:31 +00:00
|
|
|
exchange._API = Bittrex({'key': '', 'secret': ''})
|
2017-10-30 23:36:35 +00:00
|
|
|
|
2017-11-25 01:04:37 +00:00
|
|
|
# Initialize logger
|
|
|
|
logging.basicConfig(
|
|
|
|
level=args.loglevel,
|
|
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
|
|
)
|
|
|
|
|
2017-12-16 14:42:28 +00:00
|
|
|
logger.info('Using config: %s ...', args.config)
|
|
|
|
config = load_config(args.config)
|
|
|
|
pairs = config['exchange']['pair_whitelist']
|
2017-12-18 16:36:00 +00:00
|
|
|
PROCESSED = optimize.preprocess(optimize.load_data(
|
|
|
|
pairs=pairs, ticker_interval=args.ticker_interval))
|
2017-12-16 14:42:28 +00:00
|
|
|
|
2017-11-25 01:04:37 +00:00
|
|
|
if args.mongodb:
|
2017-11-25 02:28:52 +00:00
|
|
|
logger.info('Using mongodb ...')
|
|
|
|
logger.info('Start scripts/start-mongodb.sh and start-hyperopt-worker.sh manually!')
|
2017-11-25 01:04:37 +00:00
|
|
|
|
|
|
|
db_name = 'freqtrade_hyperopt'
|
|
|
|
trials = MongoTrials('mongo://127.0.0.1:1234/{}/jobs'.format(db_name), exp_key='exp1')
|
|
|
|
else:
|
|
|
|
trials = Trials()
|
|
|
|
|
2017-11-25 00:04:11 +00:00
|
|
|
best = fmin(fn=optimizer, space=SPACE, algo=tpe.suggest, max_evals=TOTAL_TRIES, trials=trials)
|
2017-11-25 01:04:37 +00:00
|
|
|
logger.info('Best parameters:\n%s', json.dumps(best, indent=4))
|
2017-12-23 07:21:04 +00:00
|
|
|
|
|
|
|
filt_res = filter_nan(trials.results, 'total_profit')
|
|
|
|
filt_res = filter_nan(filt_res, 'avg_profit')
|
|
|
|
|
|
|
|
results = sorted(filt_res, key=itemgetter('loss'))
|
|
|
|
|
2017-11-25 01:04:37 +00:00
|
|
|
logger.info('Best Result:\n%s', results[0]['result'])
|