stable/user_data/strategies/Simple.py

84 lines
2.9 KiB
Python
Raw Normal View History

# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class Simple(IStrategy):
"""
author@: Gert Wohlgemuth
idea:
this strategy is based on the book, 'The Simple Strategy' and can be found in detail here:
https://www.amazon.com/Simple-Strategy-Powerful-Trading-Futures-ebook/dp/B00E66QPCG/ref=sr_1_1?ie=UTF8&qid=1525202675&sr=8-1&keywords=the+simple+strategy
"""
# Minimal ROI designed for the strategy.
# since this strategy is planned around 5 minutes, we assume any time we have a 5% profit we should call it a day
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"0": 0.5
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.25
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# RSI
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=7)
# required for graphing
bollinger = qtpylib.bollinger_bands(dataframe['close'], window=12, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
2018-05-01 21:38:24 +00:00
dataframe['bb_middleband'] = bollinger['mid']
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
dataframe['adx'] = ta.ADX(dataframe)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
(
(dataframe['macd'] > 0) # over 0
& (dataframe['macd'] > dataframe['macdsignal']) # over signal
& (dataframe['bb_upperband'] > dataframe['bb_upperband'].shift(1)) # pointed up
& (dataframe['rsi'] > 70) # optional filter, need to investigate
)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
2018-05-01 21:38:24 +00:00
# different strategy used for sell points, due to be able to duplicate it to 100%
dataframe.loc[
(
(
(dataframe['adx'] > 70) &
2018-05-01 21:38:24 +00:00
(dataframe['tema'] > dataframe['bb_middleband']) &
(dataframe['tema'] < dataframe['tema'].shift(1))
)
),
'sell'] = 1
return dataframe