2022-07-09 08:13:33 +00:00
|
|
|
import logging
|
2022-08-09 15:31:38 +00:00
|
|
|
from typing import Any, Dict, Tuple
|
|
|
|
import pandas as pd
|
|
|
|
from pandas import DataFrame
|
2022-07-09 08:13:33 +00:00
|
|
|
from catboost import CatBoostClassifier, Pool
|
2022-08-09 15:31:38 +00:00
|
|
|
import numpy.typing as npt
|
|
|
|
import numpy as np
|
2022-07-09 08:13:33 +00:00
|
|
|
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
2022-08-09 15:31:38 +00:00
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
2022-07-09 08:13:33 +00:00
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class CatboostClassifier(BaseRegressionModel):
|
|
|
|
"""
|
|
|
|
User created prediction model. The class needs to override three necessary
|
|
|
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
|
|
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def fit(self, data_dictionary: Dict) -> Any:
|
|
|
|
"""
|
|
|
|
User sets up the training and test data to fit their desired model here
|
|
|
|
:params:
|
|
|
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
|
|
|
all the training and test data/labels.
|
|
|
|
"""
|
|
|
|
|
|
|
|
train_data = Pool(
|
|
|
|
data=data_dictionary["train_features"],
|
|
|
|
label=data_dictionary["train_labels"],
|
|
|
|
weight=data_dictionary["train_weights"],
|
|
|
|
)
|
|
|
|
|
|
|
|
cbr = CatBoostClassifier(
|
|
|
|
allow_writing_files=False,
|
|
|
|
loss_function='MultiClass',
|
|
|
|
**self.model_training_parameters,
|
|
|
|
)
|
|
|
|
|
|
|
|
cbr.fit(train_data)
|
|
|
|
|
|
|
|
return cbr
|
2022-08-09 15:31:38 +00:00
|
|
|
|
|
|
|
def predict(
|
|
|
|
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
|
|
|
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
|
|
|
"""
|
|
|
|
Filter the prediction features data and predict with it.
|
|
|
|
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
|
|
|
:return:
|
|
|
|
:pred_df: dataframe containing the predictions
|
|
|
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
|
|
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
|
|
|
"""
|
|
|
|
|
|
|
|
dk.find_features(unfiltered_dataframe)
|
|
|
|
filtered_dataframe, _ = dk.filter_features(
|
|
|
|
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
|
|
|
)
|
|
|
|
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
|
|
|
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
|
|
|
|
|
|
|
self.data_cleaning_predict(dk, filtered_dataframe)
|
|
|
|
|
|
|
|
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
|
|
|
pred_df = DataFrame(predictions, columns=dk.label_list)
|
|
|
|
|
|
|
|
predictions_prob = self.model.predict_proba(dk.data_dictionary["prediction_features"])
|
|
|
|
pred_df_prob = DataFrame(predictions_prob, columns=self.model.classes_)
|
|
|
|
|
|
|
|
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
|
|
|
|
|
|
|
return (pred_df, dk.do_predict)
|