stable/freqtrade/data/history/idatahandler.py

382 lines
14 KiB
Python
Raw Normal View History

"""
Abstract datahandler interface.
It's subclasses handle and storing data from disk.
"""
2019-12-25 10:09:29 +00:00
import logging
2021-11-28 14:03:55 +00:00
import re
from abc import ABC, abstractmethod
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
2022-08-19 11:44:31 +00:00
from typing import List, Optional, Tuple, Type
from pandas import DataFrame
from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import ListPairsWithTimeframes, TradeList
2020-09-28 17:39:41 +00:00
from freqtrade.data.converter import clean_ohlcv_dataframe, trades_remove_duplicates, trim_dataframe
2022-03-03 06:06:13 +00:00
from freqtrade.enums import CandleType, TradingMode
2019-12-25 10:09:29 +00:00
from freqtrade.exchange import timeframe_to_seconds
2020-09-28 17:39:41 +00:00
2019-12-25 10:09:29 +00:00
logger = logging.getLogger(__name__)
class IDataHandler(ABC):
2022-05-01 15:00:00 +00:00
_OHLCV_REGEX = r'^([a-zA-Z_-]+)\-(\d+[a-zA-Z]{1,2})\-?([a-zA-Z_]*)?(?=\.)'
2021-11-28 13:33:46 +00:00
2019-12-25 10:09:29 +00:00
def __init__(self, datadir: Path) -> None:
self._datadir = datadir
@classmethod
def _get_file_extension(cls) -> str:
"""
Get file extension for this particular datahandler
"""
raise NotImplementedError()
@classmethod
2022-03-03 06:06:13 +00:00
def ohlcv_get_available_data(
cls, datadir: Path, trading_mode: TradingMode) -> ListPairsWithTimeframes:
"""
Returns a list of all pairs with ohlcv data available in this datadir
:param datadir: Directory to search for ohlcv files
:param trading_mode: trading-mode to be used
:return: List of Tuples of (pair, timeframe, CandleType)
"""
if trading_mode == TradingMode.FUTURES:
datadir = datadir.joinpath('futures')
_tmp = [
re.search(
cls._OHLCV_REGEX, p.name
) for p in datadir.glob(f"*.{cls._get_file_extension()}")]
return [
(
cls.rebuild_pair_from_filename(match[1]),
cls.rebuild_timeframe_from_filename(match[2]),
CandleType.from_string(match[3])
) for match in _tmp if match and len(match.groups()) > 1]
@classmethod
@abstractmethod
2021-12-07 19:30:58 +00:00
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
2019-12-28 10:10:31 +00:00
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
2019-12-28 10:10:31 +00:00
:return: List of Pairs
"""
@abstractmethod
def ohlcv_store(
2021-12-07 19:30:58 +00:00
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
2019-12-28 10:10:31 +00:00
"""
Store ohlcv data.
2019-12-28 10:10:31 +00:00
:param pair: Pair - used to generate filename
2021-06-25 17:13:31 +00:00
:param timeframe: Timeframe - used to generate filename
:param data: Dataframe containing OHLCV data
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
2019-12-28 10:10:31 +00:00
:return: None
"""
2022-08-19 11:44:31 +00:00
def ohlcv_data_min_max(self, pair: str, timeframe: str,
candle_type: CandleType) -> Tuple[datetime, datetime]:
"""
Returns the min and max timestamp for the given pair and timeframe.
:param pair: Pair to get min/max for
:param timeframe: Timeframe to get min/max for
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: (min, max)
"""
data = self._ohlcv_load(pair, timeframe, None, candle_type)
return data.iloc[0]['date'].to_pydatetime(), data.iloc[-1]['date'].to_pydatetime()
2019-12-28 10:10:31 +00:00
@abstractmethod
2021-12-07 19:30:58 +00:00
def _ohlcv_load(self, pair: str, timeframe: str, timerange: Optional[TimeRange],
candle_type: CandleType
2019-12-28 10:10:31 +00:00
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
2019-12-28 10:10:31 +00:00
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Timeframe (e.g. "5m")
2019-12-28 10:10:31 +00:00
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
2019-12-28 10:10:31 +00:00
:return: DataFrame with ohlcv data, or empty DataFrame
"""
2021-12-08 12:00:11 +00:00
def ohlcv_purge(self, pair: str, timeframe: str, candle_type: CandleType) -> bool:
2019-12-28 10:10:31 +00:00
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Timeframe (e.g. "5m")
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
2019-12-28 10:10:31 +00:00
:return: True when deleted, false if file did not exist.
"""
2022-05-16 17:53:01 +00:00
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
if filename.exists():
filename.unlink()
return True
return False
2019-12-28 10:10:31 +00:00
@abstractmethod
def ohlcv_append(
self,
pair: str,
timeframe: str,
data: DataFrame,
2021-12-03 11:23:35 +00:00
candle_type: CandleType
) -> None:
2019-12-28 10:10:31 +00:00
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
2019-12-28 10:10:31 +00:00
"""
@classmethod
@abstractmethod
2019-12-28 10:10:31 +00:00
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this
:param datadir: Directory to search for ohlcv files
:return: List of Pairs
"""
@abstractmethod
def trades_store(self, pair: str, data: TradeList) -> None:
2019-12-28 10:10:31 +00:00
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: List of Lists containing trade data,
column sequence as in DEFAULT_TRADES_COLUMNS
2019-12-28 10:10:31 +00:00
"""
@abstractmethod
def trades_append(self, pair: str, data: TradeList):
2019-12-28 10:10:31 +00:00
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: List of Lists containing trade data,
column sequence as in DEFAULT_TRADES_COLUMNS
2019-12-28 10:10:31 +00:00
"""
@abstractmethod
2020-04-01 05:58:39 +00:00
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
2019-12-28 10:10:31 +00:00
"""
Load a pair from file, either .json.gz or .json
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
def trades_purge(self, pair: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_trades_filename(self._datadir, pair)
if filename.exists():
filename.unlink()
return True
return False
2019-12-25 10:09:29 +00:00
2020-04-01 05:58:39 +00:00
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
"""
Load a pair from file, either .json.gz or .json
Removes duplicates in the process.
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
return trades_remove_duplicates(self._trades_load(pair, timerange=timerange))
@classmethod
def create_dir_if_needed(cls, datadir: Path):
"""
Creates datadir if necessary
should only create directories for "futures" mode at the moment.
"""
if not datadir.parent.is_dir():
datadir.parent.mkdir()
@classmethod
def _pair_data_filename(
cls,
datadir: Path,
pair: str,
timeframe: str,
2022-05-16 17:53:01 +00:00
candle_type: CandleType,
no_timeframe_modify: bool = False
) -> Path:
pair_s = misc.pair_to_filename(pair)
2021-12-03 11:23:35 +00:00
candle = ""
2022-05-16 17:53:01 +00:00
if not no_timeframe_modify:
timeframe = cls.timeframe_to_file(timeframe)
2021-12-08 13:35:15 +00:00
if candle_type != CandleType.SPOT:
datadir = datadir.joinpath('futures')
2021-12-03 11:23:35 +00:00
candle = f"-{candle_type}"
filename = datadir.joinpath(
f'{pair_s}-{timeframe}{candle}.{cls._get_file_extension()}')
return filename
@classmethod
def _pair_trades_filename(cls, datadir: Path, pair: str) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-trades.{cls._get_file_extension()}')
return filename
2022-05-01 15:00:00 +00:00
@staticmethod
def timeframe_to_file(timeframe: str):
return timeframe.replace('M', 'Mo')
@staticmethod
def rebuild_timeframe_from_filename(timeframe: str) -> str:
"""
converts timeframe from disk to file
Replaces mo with M (to avoid problems on case-insensitive filesystems)
"""
return re.sub('1mo', '1M', timeframe, flags=re.IGNORECASE)
2022-05-01 15:00:00 +00:00
2021-11-28 14:03:55 +00:00
@staticmethod
def rebuild_pair_from_filename(pair: str) -> str:
"""
Rebuild pair name from filename
Assumes a asset name of max. 7 length to also support BTC-PERP and BTC-PERP:USD names.
"""
res = re.sub(r'^(([A-Za-z]{1,10})|^([A-Za-z\-]{1,6}))(_)', r'\g<1>/', pair, 1)
2021-11-28 14:03:55 +00:00
res = re.sub('_', ':', res, 1)
return res
2019-12-25 10:09:29 +00:00
def ohlcv_load(self, pair, timeframe: str,
2021-12-08 12:00:11 +00:00
candle_type: CandleType,
2019-12-25 10:09:29 +00:00
timerange: Optional[TimeRange] = None,
fill_missing: bool = True,
2019-12-25 10:09:29 +00:00
drop_incomplete: bool = True,
startup_candles: int = 0,
warn_no_data: bool = True,
2019-12-25 10:09:29 +00:00
) -> DataFrame:
"""
Load cached candle (OHLCV) data for the given pair.
2019-12-25 10:09:29 +00:00
:param pair: Pair to load data for
:param timeframe: Timeframe (e.g. "5m")
2019-12-25 10:09:29 +00:00
:param timerange: Limit data to be loaded to this timerange
2019-12-25 14:07:49 +00:00
:param fill_missing: Fill missing values with "No action"-candles
2019-12-25 10:09:29 +00:00
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
2019-12-27 05:58:29 +00:00
:param warn_no_data: Log a warning message when no data is found
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
2019-12-25 10:09:29 +00:00
:return: DataFrame with ohlcv data, or empty DataFrame
"""
# Fix startup period
timerange_startup = deepcopy(timerange)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
pairdf = self._ohlcv_load(
pair,
timeframe,
timerange=timerange_startup,
candle_type=candle_type
)
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
return pairdf
else:
2020-03-13 17:26:14 +00:00
enddate = pairdf.iloc[-1]['date']
if timerange_startup:
2022-01-08 13:38:46 +00:00
self._validate_pairdata(pair, pairdf, timeframe, candle_type, timerange_startup)
pairdf = trim_dataframe(pairdf, timerange_startup)
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
return pairdf
# incomplete candles should only be dropped if we didn't trim the end beforehand.
2020-03-12 18:50:46 +00:00
pairdf = clean_ohlcv_dataframe(pairdf, timeframe,
pair=pair,
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and
enddate == pairdf.iloc[-1]['date']))
self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data)
2020-03-12 18:50:46 +00:00
return pairdf
2019-12-25 10:09:29 +00:00
def _check_empty_df(self, pairdf: DataFrame, pair: str, timeframe: str,
candle_type: CandleType, warn_no_data: bool):
"""
Warn on empty dataframe
"""
if pairdf.empty:
if warn_no_data:
logger.warning(
f"No history for {pair}, {candle_type}, {timeframe} found. "
"Use `freqtrade download-data` to download the data"
)
return True
return False
2019-12-25 10:09:29 +00:00
2022-01-08 13:38:46 +00:00
def _validate_pairdata(self, pair, pairdata: DataFrame, timeframe: str,
candle_type: CandleType, timerange: TimeRange):
2019-12-25 10:09:29 +00:00
"""
Validates pairdata for missing data at start end end and logs warnings.
:param pairdata: Dataframe to validate
:param timerange: Timerange specified for start and end dates
"""
2019-12-25 14:35:59 +00:00
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
if pairdata.iloc[0]['date'] > start:
2022-01-08 13:38:46 +00:00
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
2019-12-25 14:35:59 +00:00
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}")
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
if pairdata.iloc[-1]['date'] < stop:
2022-01-08 13:38:46 +00:00
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
2019-12-25 14:35:59 +00:00
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
"""
Get datahandler class.
Could be done using Resolvers, but since this may be called often and resolvers
are rather expensive, doing this directly should improve performance.
:param datatype: datatype to use.
:return: Datahandler class
"""
if datatype == 'json':
from .jsondatahandler import JsonDataHandler
return JsonDataHandler
elif datatype == 'jsongz':
from .jsondatahandler import JsonGzDataHandler
return JsonGzDataHandler
elif datatype == 'hdf5':
2020-07-24 17:23:37 +00:00
from .hdf5datahandler import HDF5DataHandler
return HDF5DataHandler
else:
raise ValueError(f"No datahandler for datatype {datatype} available.")
def get_datahandler(datadir: Path, data_format: str = None,
data_handler: IDataHandler = None) -> IDataHandler:
"""
:param datadir: Folder to save data
2021-06-25 17:13:31 +00:00
:param data_format: dataformat to use
:param data_handler: returns this datahandler if it exists or initializes a new one
"""
if not data_handler:
HandlerClass = get_datahandlerclass(data_format or 'json')
data_handler = HandlerClass(datadir)
return data_handler