2020-09-04 17:44:35 +00:00
|
|
|
import numpy as np
|
2020-09-28 17:43:15 +00:00
|
|
|
import pandas as pd
|
2020-09-04 17:44:35 +00:00
|
|
|
|
2020-09-04 18:02:31 +00:00
|
|
|
from freqtrade.strategy import merge_informative_pair, timeframe_to_minutes
|
2020-09-04 17:44:35 +00:00
|
|
|
|
|
|
|
|
|
|
|
def generate_test_data(timeframe: str, size: int):
|
|
|
|
np.random.seed(42)
|
|
|
|
tf_mins = timeframe_to_minutes(timeframe)
|
|
|
|
|
|
|
|
base = np.random.normal(20, 2, size=size)
|
|
|
|
|
|
|
|
date = pd.period_range('2020-07-05', periods=size, freq=f'{tf_mins}min').to_timestamp()
|
|
|
|
df = pd.DataFrame({
|
|
|
|
'date': date,
|
|
|
|
'open': base,
|
|
|
|
'high': base + np.random.normal(2, 1, size=size),
|
|
|
|
'low': base - np.random.normal(2, 1, size=size),
|
|
|
|
'close': base + np.random.normal(0, 1, size=size),
|
|
|
|
'volume': np.random.normal(200, size=size)
|
|
|
|
}
|
|
|
|
)
|
|
|
|
df = df.dropna()
|
|
|
|
return df
|
|
|
|
|
|
|
|
|
2020-09-04 18:02:31 +00:00
|
|
|
def test_merge_informative_pair():
|
2020-09-04 17:44:35 +00:00
|
|
|
data = generate_test_data('15m', 40)
|
|
|
|
informative = generate_test_data('1h', 40)
|
|
|
|
|
2020-09-04 18:09:02 +00:00
|
|
|
result = merge_informative_pair(data, informative, '15m', '1h', ffill=True)
|
2020-09-04 17:44:35 +00:00
|
|
|
assert isinstance(result, pd.DataFrame)
|
|
|
|
assert len(result) == len(data)
|
|
|
|
assert 'date' in result.columns
|
|
|
|
assert result['date'].equals(data['date'])
|
|
|
|
assert 'date_1h' in result.columns
|
|
|
|
|
|
|
|
assert 'open' in result.columns
|
|
|
|
assert 'open_1h' in result.columns
|
|
|
|
assert result['open'].equals(data['open'])
|
|
|
|
|
|
|
|
assert 'close' in result.columns
|
|
|
|
assert 'close_1h' in result.columns
|
|
|
|
assert result['close'].equals(data['close'])
|
|
|
|
|
|
|
|
assert 'volume' in result.columns
|
|
|
|
assert 'volume_1h' in result.columns
|
|
|
|
assert result['volume'].equals(data['volume'])
|
|
|
|
|
|
|
|
# First 4 rows are empty
|
|
|
|
assert result.iloc[0]['date_1h'] is pd.NaT
|
|
|
|
assert result.iloc[1]['date_1h'] is pd.NaT
|
|
|
|
assert result.iloc[2]['date_1h'] is pd.NaT
|
|
|
|
assert result.iloc[3]['date_1h'] is pd.NaT
|
|
|
|
# Next 4 rows contain the starting date (0:00)
|
|
|
|
assert result.iloc[4]['date_1h'] == result.iloc[0]['date']
|
|
|
|
assert result.iloc[5]['date_1h'] == result.iloc[0]['date']
|
|
|
|
assert result.iloc[6]['date_1h'] == result.iloc[0]['date']
|
|
|
|
assert result.iloc[7]['date_1h'] == result.iloc[0]['date']
|
|
|
|
# Next 4 rows contain the next Hourly date original date row 4
|
|
|
|
assert result.iloc[8]['date_1h'] == result.iloc[4]['date']
|
2020-09-04 18:09:02 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_merge_informative_pair_same():
|
|
|
|
data = generate_test_data('15m', 40)
|
|
|
|
informative = generate_test_data('15m', 40)
|
|
|
|
|
|
|
|
result = merge_informative_pair(data, informative, '15m', '15m', ffill=True)
|
|
|
|
assert isinstance(result, pd.DataFrame)
|
|
|
|
assert len(result) == len(data)
|
|
|
|
assert 'date' in result.columns
|
|
|
|
assert result['date'].equals(data['date'])
|
|
|
|
assert 'date_15m' in result.columns
|
|
|
|
|
|
|
|
assert 'open' in result.columns
|
|
|
|
assert 'open_15m' in result.columns
|
|
|
|
assert result['open'].equals(data['open'])
|
|
|
|
|
|
|
|
assert 'close' in result.columns
|
|
|
|
assert 'close_15m' in result.columns
|
|
|
|
assert result['close'].equals(data['close'])
|
|
|
|
|
|
|
|
assert 'volume' in result.columns
|
|
|
|
assert 'volume_15m' in result.columns
|
|
|
|
assert result['volume'].equals(data['volume'])
|
|
|
|
|
|
|
|
# Dates match 1:1
|
|
|
|
assert result['date_15m'].equals(result['date'])
|