50fbc2eec2
* CI: use staticcheck for linting This commit switches the linter for Go code from golint to staticcheck. Golint has been deprecated since last year and staticcheck is a recommended replacement. Signed-off-by: Lucas Servén Marín <lserven@gmail.com> * revendor Signed-off-by: Lucas Servén Marín <lserven@gmail.com> * cmd,pkg: fix lint warnings Signed-off-by: Lucas Servén Marín <lserven@gmail.com>
383 lines
10 KiB
Go
383 lines
10 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// This file contains a modified copy of the encoding/json encoder.
|
|
// All dynamic behavior has been removed, and reflecttion has been replaced with go/types.
|
|
// This allows us to statically find unmarshable types
|
|
// with the same rules for tags, shadowing and addressability as encoding/json.
|
|
// This is used for SA1026.
|
|
|
|
package fakejson
|
|
|
|
import (
|
|
"go/token"
|
|
"go/types"
|
|
"sort"
|
|
"strings"
|
|
"unicode"
|
|
|
|
"golang.org/x/exp/typeparams"
|
|
"honnef.co/go/tools/staticcheck/fakereflect"
|
|
)
|
|
|
|
// parseTag splits a struct field's json tag into its name and
|
|
// comma-separated options.
|
|
func parseTag(tag string) string {
|
|
if idx := strings.Index(tag, ","); idx != -1 {
|
|
return tag[:idx]
|
|
}
|
|
return tag
|
|
}
|
|
|
|
func Marshal(v types.Type) *UnsupportedTypeError {
|
|
enc := encoder{
|
|
seen: map[fakereflect.TypeAndCanAddr]struct{}{},
|
|
}
|
|
return enc.newTypeEncoder(fakereflect.TypeAndCanAddr{Type: v}, "x")
|
|
}
|
|
|
|
// An UnsupportedTypeError is returned by Marshal when attempting
|
|
// to encode an unsupported value type.
|
|
type UnsupportedTypeError struct {
|
|
Type types.Type
|
|
Path string
|
|
}
|
|
|
|
var marshalerType = types.NewInterfaceType([]*types.Func{
|
|
types.NewFunc(token.NoPos, nil, "MarshalJSON", types.NewSignature(nil,
|
|
types.NewTuple(),
|
|
types.NewTuple(
|
|
types.NewVar(token.NoPos, nil, "", types.NewSlice(types.Typ[types.Byte])),
|
|
types.NewVar(0, nil, "", types.Universe.Lookup("error").Type())),
|
|
false,
|
|
)),
|
|
}, nil).Complete()
|
|
|
|
var textMarshalerType = types.NewInterfaceType([]*types.Func{
|
|
types.NewFunc(token.NoPos, nil, "MarshalText", types.NewSignature(nil,
|
|
types.NewTuple(),
|
|
types.NewTuple(
|
|
types.NewVar(token.NoPos, nil, "", types.NewSlice(types.Typ[types.Byte])),
|
|
types.NewVar(0, nil, "", types.Universe.Lookup("error").Type())),
|
|
false,
|
|
)),
|
|
}, nil).Complete()
|
|
|
|
type encoder struct {
|
|
seen map[fakereflect.TypeAndCanAddr]struct{}
|
|
}
|
|
|
|
func (enc *encoder) newTypeEncoder(t fakereflect.TypeAndCanAddr, stack string) *UnsupportedTypeError {
|
|
if _, ok := enc.seen[t]; ok {
|
|
return nil
|
|
}
|
|
enc.seen[t] = struct{}{}
|
|
|
|
if t.Implements(marshalerType) {
|
|
return nil
|
|
}
|
|
if !t.IsPtr() && t.CanAddr() && fakereflect.PtrTo(t).Implements(marshalerType) {
|
|
return nil
|
|
}
|
|
if t.Implements(textMarshalerType) {
|
|
return nil
|
|
}
|
|
if !t.IsPtr() && t.CanAddr() && fakereflect.PtrTo(t).Implements(textMarshalerType) {
|
|
return nil
|
|
}
|
|
|
|
switch t.Type.Underlying().(type) {
|
|
case *types.Basic, *types.Interface:
|
|
return nil
|
|
case *types.Struct:
|
|
return enc.typeFields(t, stack)
|
|
case *types.Map:
|
|
return enc.newMapEncoder(t, stack)
|
|
case *types.Slice:
|
|
return enc.newSliceEncoder(t, stack)
|
|
case *types.Array:
|
|
return enc.newArrayEncoder(t, stack)
|
|
case *types.Pointer:
|
|
// we don't have to express the pointer dereference in the path; x.f is syntactic sugar for (*x).f
|
|
return enc.newTypeEncoder(t.Elem(), stack)
|
|
default:
|
|
return &UnsupportedTypeError{t.Type, stack}
|
|
}
|
|
}
|
|
|
|
func (enc *encoder) newMapEncoder(t fakereflect.TypeAndCanAddr, stack string) *UnsupportedTypeError {
|
|
if typeparams.IsTypeParam(t.Key().Type) {
|
|
// We don't know enough about the concrete instantiation to say much about the key. The only time we could make
|
|
// a definite "this key is bad" statement is if the type parameter is constrained by type terms, none of which
|
|
// are tilde terms, none of which are a basic type. In all other cases, the key might implement TextMarshaler.
|
|
// It doesn't seem worth checking for that one single case.
|
|
return enc.newTypeEncoder(t.Elem(), stack+"[k]")
|
|
}
|
|
|
|
switch t.Key().Type.Underlying().(type) {
|
|
case *types.Basic:
|
|
default:
|
|
if !t.Key().Implements(textMarshalerType) {
|
|
return &UnsupportedTypeError{
|
|
Type: t.Type,
|
|
Path: stack,
|
|
}
|
|
}
|
|
}
|
|
return enc.newTypeEncoder(t.Elem(), stack+"[k]")
|
|
}
|
|
|
|
func (enc *encoder) newSliceEncoder(t fakereflect.TypeAndCanAddr, stack string) *UnsupportedTypeError {
|
|
// Byte slices get special treatment; arrays don't.
|
|
basic, ok := t.Elem().Type.Underlying().(*types.Basic)
|
|
if ok && basic.Kind() == types.Uint8 {
|
|
p := fakereflect.PtrTo(t.Elem())
|
|
if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
|
|
return nil
|
|
}
|
|
}
|
|
return enc.newArrayEncoder(t, stack)
|
|
}
|
|
|
|
func (enc *encoder) newArrayEncoder(t fakereflect.TypeAndCanAddr, stack string) *UnsupportedTypeError {
|
|
return enc.newTypeEncoder(t.Elem(), stack+"[0]")
|
|
}
|
|
|
|
func isValidTag(s string) bool {
|
|
if s == "" {
|
|
return false
|
|
}
|
|
for _, c := range s {
|
|
switch {
|
|
case strings.ContainsRune("!#$%&()*+-./:;<=>?@[]^_{|}~ ", c):
|
|
// Backslash and quote chars are reserved, but
|
|
// otherwise any punctuation chars are allowed
|
|
// in a tag name.
|
|
case !unicode.IsLetter(c) && !unicode.IsDigit(c):
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func typeByIndex(t fakereflect.TypeAndCanAddr, index []int) fakereflect.TypeAndCanAddr {
|
|
for _, i := range index {
|
|
if t.IsPtr() {
|
|
t = t.Elem()
|
|
}
|
|
t = t.Field(i).Type
|
|
}
|
|
return t
|
|
}
|
|
|
|
func pathByIndex(t fakereflect.TypeAndCanAddr, index []int) string {
|
|
path := ""
|
|
for _, i := range index {
|
|
if t.IsPtr() {
|
|
t = t.Elem()
|
|
}
|
|
path += "." + t.Field(i).Name
|
|
t = t.Field(i).Type
|
|
}
|
|
return path
|
|
}
|
|
|
|
// A field represents a single field found in a struct.
|
|
type field struct {
|
|
name string
|
|
|
|
tag bool
|
|
index []int
|
|
typ fakereflect.TypeAndCanAddr
|
|
}
|
|
|
|
// byIndex sorts field by index sequence.
|
|
type byIndex []field
|
|
|
|
func (x byIndex) Len() int { return len(x) }
|
|
|
|
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
|
|
func (x byIndex) Less(i, j int) bool {
|
|
for k, xik := range x[i].index {
|
|
if k >= len(x[j].index) {
|
|
return false
|
|
}
|
|
if xik != x[j].index[k] {
|
|
return xik < x[j].index[k]
|
|
}
|
|
}
|
|
return len(x[i].index) < len(x[j].index)
|
|
}
|
|
|
|
// typeFields returns a list of fields that JSON should recognize for the given type.
|
|
// The algorithm is breadth-first search over the set of structs to include - the top struct
|
|
// and then any reachable anonymous structs.
|
|
func (enc *encoder) typeFields(t fakereflect.TypeAndCanAddr, stack string) *UnsupportedTypeError {
|
|
// Anonymous fields to explore at the current level and the next.
|
|
current := []field{}
|
|
next := []field{{typ: t}}
|
|
|
|
// Count of queued names for current level and the next.
|
|
var count, nextCount map[fakereflect.TypeAndCanAddr]int
|
|
|
|
// Types already visited at an earlier level.
|
|
visited := map[fakereflect.TypeAndCanAddr]bool{}
|
|
|
|
// Fields found.
|
|
var fields []field
|
|
|
|
for len(next) > 0 {
|
|
current, next = next, current[:0]
|
|
count, nextCount = nextCount, map[fakereflect.TypeAndCanAddr]int{}
|
|
|
|
for _, f := range current {
|
|
if visited[f.typ] {
|
|
continue
|
|
}
|
|
visited[f.typ] = true
|
|
|
|
// Scan f.typ for fields to include.
|
|
for i := 0; i < f.typ.NumField(); i++ {
|
|
sf := f.typ.Field(i)
|
|
if sf.Anonymous {
|
|
t := sf.Type
|
|
if t.IsPtr() {
|
|
t = t.Elem()
|
|
}
|
|
if !sf.IsExported() && !t.IsStruct() {
|
|
// Ignore embedded fields of unexported non-struct types.
|
|
continue
|
|
}
|
|
// Do not ignore embedded fields of unexported struct types
|
|
// since they may have exported fields.
|
|
} else if !sf.IsExported() {
|
|
// Ignore unexported non-embedded fields.
|
|
continue
|
|
}
|
|
tag := sf.Tag.Get("json")
|
|
if tag == "-" {
|
|
continue
|
|
}
|
|
name := parseTag(tag)
|
|
if !isValidTag(name) {
|
|
name = ""
|
|
}
|
|
index := make([]int, len(f.index)+1)
|
|
copy(index, f.index)
|
|
index[len(f.index)] = i
|
|
|
|
ft := sf.Type
|
|
if ft.Name() == "" && ft.IsPtr() {
|
|
// Follow pointer.
|
|
ft = ft.Elem()
|
|
}
|
|
|
|
// Record found field and index sequence.
|
|
if name != "" || !sf.Anonymous || !ft.IsStruct() {
|
|
tagged := name != ""
|
|
if name == "" {
|
|
name = sf.Name
|
|
}
|
|
field := field{
|
|
name: name,
|
|
tag: tagged,
|
|
index: index,
|
|
typ: ft,
|
|
}
|
|
|
|
fields = append(fields, field)
|
|
if count[f.typ] > 1 {
|
|
// If there were multiple instances, add a second,
|
|
// so that the annihilation code will see a duplicate.
|
|
// It only cares about the distinction between 1 or 2,
|
|
// so don't bother generating any more copies.
|
|
fields = append(fields, fields[len(fields)-1])
|
|
}
|
|
continue
|
|
}
|
|
|
|
// Record new anonymous struct to explore in next round.
|
|
nextCount[ft]++
|
|
if nextCount[ft] == 1 {
|
|
next = append(next, field{name: ft.Name(), index: index, typ: ft})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sort.Slice(fields, func(i, j int) bool {
|
|
x := fields
|
|
// sort field by name, breaking ties with depth, then
|
|
// breaking ties with "name came from json tag", then
|
|
// breaking ties with index sequence.
|
|
if x[i].name != x[j].name {
|
|
return x[i].name < x[j].name
|
|
}
|
|
if len(x[i].index) != len(x[j].index) {
|
|
return len(x[i].index) < len(x[j].index)
|
|
}
|
|
if x[i].tag != x[j].tag {
|
|
return x[i].tag
|
|
}
|
|
return byIndex(x).Less(i, j)
|
|
})
|
|
|
|
// Delete all fields that are hidden by the Go rules for embedded fields,
|
|
// except that fields with JSON tags are promoted.
|
|
|
|
// The fields are sorted in primary order of name, secondary order
|
|
// of field index length. Loop over names; for each name, delete
|
|
// hidden fields by choosing the one dominant field that survives.
|
|
out := fields[:0]
|
|
for advance, i := 0, 0; i < len(fields); i += advance {
|
|
// One iteration per name.
|
|
// Find the sequence of fields with the name of this first field.
|
|
fi := fields[i]
|
|
name := fi.name
|
|
for advance = 1; i+advance < len(fields); advance++ {
|
|
fj := fields[i+advance]
|
|
if fj.name != name {
|
|
break
|
|
}
|
|
}
|
|
if advance == 1 { // Only one field with this name
|
|
out = append(out, fi)
|
|
continue
|
|
}
|
|
dominant, ok := dominantField(fields[i : i+advance])
|
|
if ok {
|
|
out = append(out, dominant)
|
|
}
|
|
}
|
|
|
|
fields = out
|
|
sort.Sort(byIndex(fields))
|
|
|
|
for i := range fields {
|
|
f := &fields[i]
|
|
err := enc.newTypeEncoder(typeByIndex(t, f.index), stack+pathByIndex(t, f.index))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// dominantField looks through the fields, all of which are known to
|
|
// have the same name, to find the single field that dominates the
|
|
// others using Go's embedding rules, modified by the presence of
|
|
// JSON tags. If there are multiple top-level fields, the boolean
|
|
// will be false: This condition is an error in Go and we skip all
|
|
// the fields.
|
|
func dominantField(fields []field) (field, bool) {
|
|
// The fields are sorted in increasing index-length order, then by presence of tag.
|
|
// That means that the first field is the dominant one. We need only check
|
|
// for error cases: two fields at top level, either both tagged or neither tagged.
|
|
if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
|
|
return field{}, false
|
|
}
|
|
return fields[0], true
|
|
}
|