kilo/pkg/mesh/routes.go
leonnicolas 9b14c227a9
pkg/mesh/routes.go: add flag for generic ACCEPT in FORWARD chain (#244)
* pkg/mesh/routes.go: add flag for generic ACCEPT in FORWARD chain

Some linux distros or docker will set the default policy in the FORWARD
chain in the filter table to DROP. With the new ip-tables-forward-rules
flag a generic ACCEPT for all packages going from and to the pod subnet
is added to the FORWARD chain.

Signed-off-by: leonnicolas <leonloechner@gmx.de>

* Update cmd/kg/main.go

Co-authored-by: Lucas Servén Marín <lserven@gmail.com>

* Update cmd/kg/main.go

Co-authored-by: Lucas Servén Marín <lserven@gmail.com>
2021-09-30 14:39:06 +02:00

293 lines
12 KiB
Go

// Copyright 2019 the Kilo authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
package mesh
import (
"net"
"github.com/vishvananda/netlink"
"golang.org/x/sys/unix"
"github.com/squat/kilo/pkg/encapsulation"
"github.com/squat/kilo/pkg/iptables"
)
const kiloTableIndex = 1107
// Routes generates a slice of routes for a given Topology.
func (t *Topology) Routes(kiloIfaceName string, kiloIface, privIface, tunlIface int, local bool, enc encapsulation.Encapsulator) ([]*netlink.Route, []*netlink.Rule) {
var routes []*netlink.Route
var rules []*netlink.Rule
if !t.leader {
// Find the GW for this segment.
// This will be the an IP of the leader.
// In an IPIP encapsulated mesh it is the leader's private IP.
var gw net.IP
for _, segment := range t.segments {
if segment.location == t.location {
gw = enc.Gw(segment.endpoint.IP, segment.privateIPs[segment.leader], segment.cidrs[segment.leader])
break
}
}
for _, segment := range t.segments {
// First, add a route to the WireGuard IP of the segment.
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: oneAddressCIDR(segment.wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Add routes for the current segment if local is true.
if segment.location == t.location {
if local {
for i := range segment.cidrs {
// Don't add routes for the local node.
if segment.privateIPs[i].Equal(t.privateIP.IP) {
continue
}
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Encapsulate packets from the host's Pod subnet headed
// to private IPs.
if enc.Strategy() == encapsulation.Always || (enc.Strategy() == encapsulation.CrossSubnet && !t.privateIP.Contains(segment.privateIPs[i])) {
routes = append(routes, &netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
})
rules = append(rules, defaultRule(&netlink.Rule{
Src: t.subnet,
Dst: oneAddressCIDR(segment.privateIPs[i]),
Table: kiloTableIndex,
}))
}
}
}
continue
}
for i := range segment.cidrs {
// Add routes to the Pod CIDRs of nodes in other segments.
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
}
for i := range segment.privateIPs {
// Add routes to the private IPs of nodes in other segments.
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
}
// For segments / locations other than the location of this instance of kg,
// we need to set routes for allowed location IPs over the leader in the current location.
for i := range segment.allowedLocationIPs {
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.allowedLocationIPs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
}
}
// Add routes for the allowed IPs of peers.
for _, peer := range t.peers {
for i := range peer.AllowedIPs {
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: peer.AllowedIPs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
}
}
return routes, rules
}
for _, segment := range t.segments {
// Add routes for the current segment if local is true.
if segment.location == t.location {
// If the local node does not have a private IP address,
// then skip adding routes, because the node is in its own location.
if local && t.privateIP != nil {
for i := range segment.cidrs {
// Don't add routes for the local node.
if segment.privateIPs[i].Equal(t.privateIP.IP) {
continue
}
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Encapsulate packets from the host's Pod subnet headed
// to private IPs.
if enc.Strategy() == encapsulation.Always || (enc.Strategy() == encapsulation.CrossSubnet && !t.privateIP.Contains(segment.privateIPs[i])) {
routes = append(routes, &netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
})
rules = append(rules, defaultRule(&netlink.Rule{
Src: t.subnet,
Dst: oneAddressCIDR(segment.privateIPs[i]),
Table: kiloTableIndex,
}))
// Also encapsulate packets from the Kilo interface
// headed to private IPs.
rules = append(rules, defaultRule(&netlink.Rule{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Table: kiloTableIndex,
IifName: kiloIfaceName,
}))
}
}
}
// Continuing here prevents leaders form adding routes via WireGuard to
// nodes in their own location.
continue
}
for i := range segment.cidrs {
// Add routes to the Pod CIDRs of nodes in other segments.
routes = append(routes, &netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
// Don't add routes through Kilo if the private IP
// equals the external IP. This means that the node
// is only accessible through an external IP and we
// cannot encapsulate traffic to an IP through the IP.
if segment.privateIPs == nil || segment.privateIPs[i].Equal(segment.endpoint.IP) {
continue
}
// Add routes to the private IPs of nodes in other segments.
// Number of CIDRs and private IPs always match so
// we can reuse the loop.
routes = append(routes, &netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
}
// For segments / locations other than the location of this instance of kg,
// we need to set routes for allowed location IPs over the wg interface.
for i := range segment.allowedLocationIPs {
routes = append(routes, &netlink.Route{
Dst: segment.allowedLocationIPs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
}
}
// Add routes for the allowed IPs of peers.
for _, peer := range t.peers {
for i := range peer.AllowedIPs {
routes = append(routes, &netlink.Route{
Dst: peer.AllowedIPs[i],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
}
}
return routes, rules
}
func encapsulateRoute(route *netlink.Route, encapsulate encapsulation.Strategy, subnet *net.IPNet, tunlIface int) *netlink.Route {
if encapsulate == encapsulation.Always || (encapsulate == encapsulation.CrossSubnet && !subnet.Contains(route.Gw)) {
route.LinkIndex = tunlIface
}
return route
}
// Rules returns the iptables rules required by the local node.
func (t *Topology) Rules(cni, iptablesForwardRule bool) []iptables.Rule {
var rules []iptables.Rule
rules = append(rules, iptables.NewIPv4Chain("nat", "KILO-NAT"))
rules = append(rules, iptables.NewIPv6Chain("nat", "KILO-NAT"))
if cni {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(t.subnet.IP)), "nat", "POSTROUTING", "-s", t.subnet.String(), "-m", "comment", "--comment", "Kilo: jump to KILO-NAT chain", "-j", "KILO-NAT"))
if iptablesForwardRule {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(t.subnet.IP)), "filter", "FORWARD", "-m", "comment", "--comment", "Kilo: forward packets from the pod subnet", "-s", t.subnet.String(), "-j", "ACCEPT"))
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(t.subnet.IP)), "filter", "FORWARD", "-m", "comment", "--comment", "Kilo: forward packets to the pod subnet", "-d", t.subnet.String(), "-j", "ACCEPT"))
}
}
for _, s := range t.segments {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(s.wireGuardIP)), "nat", "KILO-NAT", "-d", oneAddressCIDR(s.wireGuardIP).String(), "-m", "comment", "--comment", "Kilo: do not NAT packets destined for WireGuared IPs", "-j", "RETURN"))
for _, aip := range s.allowedIPs {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(aip.IP)), "nat", "KILO-NAT", "-d", aip.String(), "-m", "comment", "--comment", "Kilo: do not NAT packets destined for known IPs", "-j", "RETURN"))
}
// Make sure packets to allowed location IPs go through the KILO-NAT chain, so they can be MASQUERADEd,
// Otherwise packets to these destinations will reach the destination, but never find their way back.
// We only want to NAT in locations of the corresponding allowed location IPs.
if t.location == s.location {
for _, alip := range s.allowedLocationIPs {
rules = append(rules,
iptables.NewRule(iptables.GetProtocol(len(alip.IP)), "nat", "POSTROUTING", "-d", alip.String(), "-m", "comment", "--comment", "Kilo: jump to NAT chain", "-j", "KILO-NAT"),
)
}
}
}
for _, p := range t.peers {
for _, aip := range p.AllowedIPs {
rules = append(rules,
iptables.NewRule(iptables.GetProtocol(len(aip.IP)), "nat", "POSTROUTING", "-s", aip.String(), "-m", "comment", "--comment", "Kilo: jump to NAT chain", "-j", "KILO-NAT"),
iptables.NewRule(iptables.GetProtocol(len(aip.IP)), "nat", "KILO-NAT", "-d", aip.String(), "-m", "comment", "--comment", "Kilo: do not NAT packets destined for peers", "-j", "RETURN"),
)
}
}
rules = append(rules, iptables.NewIPv4Rule("nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: NAT remaining packets", "-j", "MASQUERADE"))
rules = append(rules, iptables.NewIPv6Rule("nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: NAT remaining packets", "-j", "MASQUERADE"))
return rules
}
func defaultRule(rule *netlink.Rule) *netlink.Rule {
base := netlink.NewRule()
base.Src = rule.Src
base.Dst = rule.Dst
base.IifName = rule.IifName
base.Table = rule.Table
return base
}