kilo/vendor/golang.org/x/tools/go/types/typeutil/map.go

444 lines
12 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package typeutil defines various utilities for types, such as Map,
// a mapping from types.Type to interface{} values.
package typeutil // import "golang.org/x/tools/go/types/typeutil"
import (
"bytes"
"fmt"
"go/types"
"reflect"
"golang.org/x/tools/internal/typeparams"
)
// Map is a hash-table-based mapping from types (types.Type) to
// arbitrary interface{} values. The concrete types that implement
// the Type interface are pointers. Since they are not canonicalized,
// == cannot be used to check for equivalence, and thus we cannot
// simply use a Go map.
//
// Just as with map[K]V, a nil *Map is a valid empty map.
//
// Not thread-safe.
//
type Map struct {
hasher Hasher // shared by many Maps
table map[uint32][]entry // maps hash to bucket; entry.key==nil means unused
length int // number of map entries
}
// entry is an entry (key/value association) in a hash bucket.
type entry struct {
key types.Type
value interface{}
}
// SetHasher sets the hasher used by Map.
//
// All Hashers are functionally equivalent but contain internal state
// used to cache the results of hashing previously seen types.
//
// A single Hasher created by MakeHasher() may be shared among many
// Maps. This is recommended if the instances have many keys in
// common, as it will amortize the cost of hash computation.
//
// A Hasher may grow without bound as new types are seen. Even when a
// type is deleted from the map, the Hasher never shrinks, since other
// types in the map may reference the deleted type indirectly.
//
// Hashers are not thread-safe, and read-only operations such as
// Map.Lookup require updates to the hasher, so a full Mutex lock (not a
// read-lock) is require around all Map operations if a shared
// hasher is accessed from multiple threads.
//
// If SetHasher is not called, the Map will create a private hasher at
// the first call to Insert.
//
func (m *Map) SetHasher(hasher Hasher) {
m.hasher = hasher
}
// Delete removes the entry with the given key, if any.
// It returns true if the entry was found.
//
func (m *Map) Delete(key types.Type) bool {
if m != nil && m.table != nil {
hash := m.hasher.Hash(key)
bucket := m.table[hash]
for i, e := range bucket {
if e.key != nil && types.Identical(key, e.key) {
// We can't compact the bucket as it
// would disturb iterators.
bucket[i] = entry{}
m.length--
return true
}
}
}
return false
}
// At returns the map entry for the given key.
// The result is nil if the entry is not present.
//
func (m *Map) At(key types.Type) interface{} {
if m != nil && m.table != nil {
for _, e := range m.table[m.hasher.Hash(key)] {
if e.key != nil && types.Identical(key, e.key) {
return e.value
}
}
}
return nil
}
// Set sets the map entry for key to val,
// and returns the previous entry, if any.
func (m *Map) Set(key types.Type, value interface{}) (prev interface{}) {
if m.table != nil {
hash := m.hasher.Hash(key)
bucket := m.table[hash]
var hole *entry
for i, e := range bucket {
if e.key == nil {
hole = &bucket[i]
} else if types.Identical(key, e.key) {
prev = e.value
bucket[i].value = value
return
}
}
if hole != nil {
*hole = entry{key, value} // overwrite deleted entry
} else {
m.table[hash] = append(bucket, entry{key, value})
}
} else {
if m.hasher.memo == nil {
m.hasher = MakeHasher()
}
hash := m.hasher.Hash(key)
m.table = map[uint32][]entry{hash: {entry{key, value}}}
}
m.length++
return
}
// Len returns the number of map entries.
func (m *Map) Len() int {
if m != nil {
return m.length
}
return 0
}
// Iterate calls function f on each entry in the map in unspecified order.
//
// If f should mutate the map, Iterate provides the same guarantees as
// Go maps: if f deletes a map entry that Iterate has not yet reached,
// f will not be invoked for it, but if f inserts a map entry that
// Iterate has not yet reached, whether or not f will be invoked for
// it is unspecified.
//
func (m *Map) Iterate(f func(key types.Type, value interface{})) {
if m != nil {
for _, bucket := range m.table {
for _, e := range bucket {
if e.key != nil {
f(e.key, e.value)
}
}
}
}
}
// Keys returns a new slice containing the set of map keys.
// The order is unspecified.
func (m *Map) Keys() []types.Type {
keys := make([]types.Type, 0, m.Len())
m.Iterate(func(key types.Type, _ interface{}) {
keys = append(keys, key)
})
return keys
}
func (m *Map) toString(values bool) string {
if m == nil {
return "{}"
}
var buf bytes.Buffer
fmt.Fprint(&buf, "{")
sep := ""
m.Iterate(func(key types.Type, value interface{}) {
fmt.Fprint(&buf, sep)
sep = ", "
fmt.Fprint(&buf, key)
if values {
fmt.Fprintf(&buf, ": %q", value)
}
})
fmt.Fprint(&buf, "}")
return buf.String()
}
// String returns a string representation of the map's entries.
// Values are printed using fmt.Sprintf("%v", v).
// Order is unspecified.
//
func (m *Map) String() string {
return m.toString(true)
}
// KeysString returns a string representation of the map's key set.
// Order is unspecified.
//
func (m *Map) KeysString() string {
return m.toString(false)
}
////////////////////////////////////////////////////////////////////////
// Hasher
// A Hasher maps each type to its hash value.
// For efficiency, a hasher uses memoization; thus its memory
// footprint grows monotonically over time.
// Hashers are not thread-safe.
// Hashers have reference semantics.
// Call MakeHasher to create a Hasher.
type Hasher struct {
memo map[types.Type]uint32
// ptrMap records pointer identity.
ptrMap map[interface{}]uint32
// sigTParams holds type parameters from the signature being hashed.
// Signatures are considered identical modulo renaming of type parameters, so
// within the scope of a signature type the identity of the signature's type
// parameters is just their index.
//
// Since the language does not currently support referring to uninstantiated
// generic types or functions, and instantiated signatures do not have type
// parameter lists, we should never encounter a second non-empty type
// parameter list when hashing a generic signature.
sigTParams *typeparams.TypeParamList
}
// MakeHasher returns a new Hasher instance.
func MakeHasher() Hasher {
return Hasher{
memo: make(map[types.Type]uint32),
ptrMap: make(map[interface{}]uint32),
sigTParams: nil,
}
}
// Hash computes a hash value for the given type t such that
// Identical(t, t') => Hash(t) == Hash(t').
func (h Hasher) Hash(t types.Type) uint32 {
hash, ok := h.memo[t]
if !ok {
hash = h.hashFor(t)
h.memo[t] = hash
}
return hash
}
// hashString computes the FowlerNollVo hash of s.
func hashString(s string) uint32 {
var h uint32
for i := 0; i < len(s); i++ {
h ^= uint32(s[i])
h *= 16777619
}
return h
}
// hashFor computes the hash of t.
func (h Hasher) hashFor(t types.Type) uint32 {
// See Identical for rationale.
switch t := t.(type) {
case *types.Basic:
return uint32(t.Kind())
case *types.Array:
return 9043 + 2*uint32(t.Len()) + 3*h.Hash(t.Elem())
case *types.Slice:
return 9049 + 2*h.Hash(t.Elem())
case *types.Struct:
var hash uint32 = 9059
for i, n := 0, t.NumFields(); i < n; i++ {
f := t.Field(i)
if f.Anonymous() {
hash += 8861
}
hash += hashString(t.Tag(i))
hash += hashString(f.Name()) // (ignore f.Pkg)
hash += h.Hash(f.Type())
}
return hash
case *types.Pointer:
return 9067 + 2*h.Hash(t.Elem())
case *types.Signature:
var hash uint32 = 9091
if t.Variadic() {
hash *= 8863
}
// Use a separate hasher for types inside of the signature, where type
// parameter identity is modified to be (index, constraint). We must use a
// new memo for this hasher as type identity may be affected by this
// masking. For example, in func[T any](*T), the identity of *T depends on
// whether we are mapping the argument in isolation, or recursively as part
// of hashing the signature.
//
// We should never encounter a generic signature while hashing another
// generic signature, but defensively set sigTParams only if h.mask is
// unset.
tparams := typeparams.ForSignature(t)
if h.sigTParams == nil && tparams.Len() != 0 {
h = Hasher{
// There may be something more efficient than discarding the existing
// memo, but it would require detecting whether types are 'tainted' by
// references to type parameters.
memo: make(map[types.Type]uint32),
// Re-using ptrMap ensures that pointer identity is preserved in this
// hasher.
ptrMap: h.ptrMap,
sigTParams: tparams,
}
}
for i := 0; i < tparams.Len(); i++ {
tparam := tparams.At(i)
hash += 7 * h.Hash(tparam.Constraint())
}
return hash + 3*h.hashTuple(t.Params()) + 5*h.hashTuple(t.Results())
case *typeparams.Union:
return h.hashUnion(t)
case *types.Interface:
// Interfaces are identical if they have the same set of methods, with
// identical names and types, and they have the same set of type
// restrictions. See go/types.identical for more details.
var hash uint32 = 9103
// Hash methods.
for i, n := 0, t.NumMethods(); i < n; i++ {
// Method order is not significant.
// Ignore m.Pkg().
m := t.Method(i)
hash += 3*hashString(m.Name()) + 5*h.Hash(m.Type())
}
// Hash type restrictions.
terms, err := typeparams.InterfaceTermSet(t)
// if err != nil t has invalid type restrictions.
if err == nil {
hash += h.hashTermSet(terms)
}
return hash
case *types.Map:
return 9109 + 2*h.Hash(t.Key()) + 3*h.Hash(t.Elem())
case *types.Chan:
return 9127 + 2*uint32(t.Dir()) + 3*h.Hash(t.Elem())
case *types.Named:
hash := h.hashPtr(t.Obj())
targs := typeparams.NamedTypeArgs(t)
for i := 0; i < targs.Len(); i++ {
targ := targs.At(i)
hash += 2 * h.Hash(targ)
}
return hash
case *typeparams.TypeParam:
return h.hashTypeParam(t)
case *types.Tuple:
return h.hashTuple(t)
}
panic(fmt.Sprintf("%T: %v", t, t))
}
func (h Hasher) hashTuple(tuple *types.Tuple) uint32 {
// See go/types.identicalTypes for rationale.
n := tuple.Len()
hash := 9137 + 2*uint32(n)
for i := 0; i < n; i++ {
hash += 3 * h.Hash(tuple.At(i).Type())
}
return hash
}
func (h Hasher) hashUnion(t *typeparams.Union) uint32 {
// Hash type restrictions.
terms, err := typeparams.UnionTermSet(t)
// if err != nil t has invalid type restrictions. Fall back on a non-zero
// hash.
if err != nil {
return 9151
}
return h.hashTermSet(terms)
}
func (h Hasher) hashTermSet(terms []*typeparams.Term) uint32 {
hash := 9157 + 2*uint32(len(terms))
for _, term := range terms {
// term order is not significant.
termHash := h.Hash(term.Type())
if term.Tilde() {
termHash *= 9161
}
hash += 3 * termHash
}
return hash
}
// hashTypeParam returns a hash of the type parameter t, with a hash value
// depending on whether t is contained in h.sigTParams.
//
// If h.sigTParams is set and contains t, then we are in the process of hashing
// a signature, and the hash value of t must depend only on t's index and
// constraint: signatures are considered identical modulo type parameter
// renaming. To avoid infinite recursion, we only hash the type parameter
// index, and rely on types.Identical to handle signatures where constraints
// are not identical.
//
// Otherwise the hash of t depends only on t's pointer identity.
func (h Hasher) hashTypeParam(t *typeparams.TypeParam) uint32 {
if h.sigTParams != nil {
i := t.Index()
if i >= 0 && i < h.sigTParams.Len() && t == h.sigTParams.At(i) {
return 9173 + 3*uint32(i)
}
}
return h.hashPtr(t.Obj())
}
// hashPtr hashes the pointer identity of ptr. It uses h.ptrMap to ensure that
// pointers values are not dependent on the GC.
func (h Hasher) hashPtr(ptr interface{}) uint32 {
if hash, ok := h.ptrMap[ptr]; ok {
return hash
}
hash := uint32(reflect.ValueOf(ptr).Pointer())
h.ptrMap[ptr] = hash
return hash
}