kilo/pkg/mesh/mesh.go
Lucas Servén Marín e4ad7c29ec
manifests: keep private key between restarts
This commit ensures that the WireGuard private key is re-used between
container restarts. The result of this is that external peers can keep
using their configuration and don't need to be re-configured just
because the Kilo container restarted.
2019-05-10 22:21:56 +02:00

816 lines
23 KiB
Go

// Copyright 2019 the Kilo authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mesh
import (
"bytes"
"fmt"
"io/ioutil"
"net"
"os"
"sync"
"time"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
"github.com/prometheus/client_golang/prometheus"
"github.com/vishvananda/netlink"
"github.com/squat/kilo/pkg/iproute"
"github.com/squat/kilo/pkg/iptables"
"github.com/squat/kilo/pkg/route"
"github.com/squat/kilo/pkg/wireguard"
)
const resyncPeriod = 30 * time.Second
const (
// KiloPath is the directory where Kilo stores its configuration.
KiloPath = "/var/lib/kilo"
// PrivateKeyPath is the filepath where the WireGuard private key is stored.
PrivateKeyPath = KiloPath + "/key"
// ConfPath is the filepath where the WireGuard configuration is stored.
ConfPath = KiloPath + "/conf"
// DefaultKiloPort is the default UDP port Kilo uses.
DefaultKiloPort = 51820
// DefaultCNIPath is the default path to the CNI config file.
DefaultCNIPath = "/etc/cni/net.d/10-kilo.conflist"
)
// DefaultKiloSubnet is the default CIDR for Kilo.
var DefaultKiloSubnet = &net.IPNet{IP: []byte{10, 4, 0, 0}, Mask: []byte{255, 255, 0, 0}}
// Granularity represents the abstraction level at which the network
// should be meshed.
type Granularity string
// Encapsulate identifies what packets within a location should
// be encapsulated.
type Encapsulate string
const (
// LogicalGranularity indicates that the network should create
// a mesh between logical locations, e.g. data-centers, but not between
// all nodes within a single location.
LogicalGranularity Granularity = "location"
// FullGranularity indicates that the network should create
// a mesh between every node.
FullGranularity Granularity = "full"
// NeverEncapsulate indicates that no packets within a location
// should be encapsulated.
NeverEncapsulate Encapsulate = "never"
// CrossSubnetEncapsulate indicates that only packets that
// traverse subnets within a location should be encapsulated.
CrossSubnetEncapsulate Encapsulate = "crosssubnet"
// AlwaysEncapsulate indicates that all packets within a location
// should be encapsulated.
AlwaysEncapsulate Encapsulate = "always"
)
// Node represents a node in the network.
type Node struct {
ExternalIP *net.IPNet
Key []byte
InternalIP *net.IPNet
// LastSeen is a Unix time for the last time
// the node confirmed it was live.
LastSeen int64
// Leader is a suggestion to Kilo that
// the node wants to lead its segment.
Leader bool
Location string
Name string
Subnet *net.IPNet
WireGuardIP *net.IPNet
}
// Ready indicates whether or not the node is ready.
func (n *Node) Ready() bool {
// Nodes that are not leaders will not have WireGuardIPs, so it is not required.
return n != nil && n.ExternalIP != nil && n.Key != nil && n.InternalIP != nil && n.Subnet != nil && time.Now().Unix()-n.LastSeen < int64(resyncPeriod)*2/int64(time.Second)
}
// Peer represents a peer in the network.
type Peer struct {
wireguard.Peer
Name string
}
// Ready indicates whether or not the peer is ready.
func (p *Peer) Ready() bool {
return p != nil && p.AllowedIPs != nil && len(p.AllowedIPs) != 0 && p.PublicKey != nil
}
// EventType describes what kind of an action an event represents.
type EventType string
const (
// AddEvent represents an action where an item was added.
AddEvent EventType = "add"
// DeleteEvent represents an action where an item was removed.
DeleteEvent EventType = "delete"
// UpdateEvent represents an action where an item was updated.
UpdateEvent EventType = "update"
)
// NodeEvent represents an event concerning a node in the cluster.
type NodeEvent struct {
Type EventType
Node *Node
Old *Node
}
// PeerEvent represents an event concerning a peer in the cluster.
type PeerEvent struct {
Type EventType
Peer *Peer
Old *Peer
}
// Backend can create clients for all of the
// primitive types that Kilo deals with, namely:
// * nodes; and
// * peers.
type Backend interface {
Nodes() NodeBackend
Peers() PeerBackend
}
// NodeBackend can get nodes by name, init itself,
// list the nodes that should be meshed,
// set Kilo properties for a node,
// clean up any changes applied to the backend,
// and watch for changes to nodes.
type NodeBackend interface {
CleanUp(string) error
Get(string) (*Node, error)
Init(<-chan struct{}) error
List() ([]*Node, error)
Set(string, *Node) error
Watch() <-chan *NodeEvent
}
// PeerBackend can get peers by name, init itself,
// list the peers that should be in the mesh,
// set fields for a peer,
// clean up any changes applied to the backend,
// and watch for changes to peers.
type PeerBackend interface {
CleanUp(string) error
Get(string) (*Peer, error)
Init(<-chan struct{}) error
List() ([]*Peer, error)
Set(string, *Peer) error
Watch() <-chan *PeerEvent
}
// Mesh is able to create Kilo network meshes.
type Mesh struct {
Backend
cni bool
cniPath string
encapsulate Encapsulate
externalIP *net.IPNet
granularity Granularity
hostname string
internalIP *net.IPNet
ipTables *iptables.Controller
kiloIface int
key []byte
local bool
port uint32
priv []byte
privIface int
pub []byte
pubIface int
stop chan struct{}
subnet *net.IPNet
table *route.Table
tunlIface int
wireGuardIP *net.IPNet
// nodes and peers are mutable fields in the struct
// and needs to be guarded.
nodes map[string]*Node
peers map[string]*Peer
mu sync.Mutex
errorCounter *prometheus.CounterVec
nodesGuage prometheus.Gauge
peersGuage prometheus.Gauge
reconcileCounter prometheus.Counter
logger log.Logger
}
// New returns a new Mesh instance.
func New(backend Backend, encapsulate Encapsulate, granularity Granularity, hostname string, port uint32, subnet *net.IPNet, local, cni bool, cniPath string, logger log.Logger) (*Mesh, error) {
if err := os.MkdirAll(KiloPath, 0700); err != nil {
return nil, fmt.Errorf("failed to create directory to store configuration: %v", err)
}
private, err := ioutil.ReadFile(PrivateKeyPath)
private = bytes.Trim(private, "\n")
if err != nil {
level.Warn(logger).Log("msg", "no private key found on disk; generating one now")
if private, err = wireguard.GenKey(); err != nil {
return nil, err
}
}
public, err := wireguard.PubKey(private)
if err != nil {
return nil, err
}
if err := ioutil.WriteFile(PrivateKeyPath, private, 0600); err != nil {
return nil, fmt.Errorf("failed to write private key to disk: %v", err)
}
privateIP, publicIP, err := getIP(hostname)
if err != nil {
return nil, fmt.Errorf("failed to find public IP: %v", err)
}
ifaces, err := interfacesForIP(privateIP)
if err != nil {
return nil, fmt.Errorf("failed to find interface for private IP: %v", err)
}
privIface := ifaces[0].Index
ifaces, err = interfacesForIP(publicIP)
if err != nil {
return nil, fmt.Errorf("failed to find interface for public IP: %v", err)
}
pubIface := ifaces[0].Index
kiloIface, err := wireguard.New("kilo")
if err != nil {
return nil, fmt.Errorf("failed to create WireGuard interface: %v", err)
}
var tunlIface int
if encapsulate != NeverEncapsulate {
if tunlIface, err = iproute.NewIPIP(privIface); err != nil {
return nil, fmt.Errorf("failed to create tunnel interface: %v", err)
}
if err := iproute.Set(tunlIface, true); err != nil {
return nil, fmt.Errorf("failed to set tunnel interface up: %v", err)
}
}
level.Debug(logger).Log("msg", fmt.Sprintf("using %s as the private IP address", privateIP.String()))
level.Debug(logger).Log("msg", fmt.Sprintf("using %s as the public IP address", publicIP.String()))
ipTables, err := iptables.New(len(subnet.IP))
if err != nil {
return nil, fmt.Errorf("failed to IP tables controller: %v", err)
}
return &Mesh{
Backend: backend,
cni: cni,
cniPath: cniPath,
encapsulate: encapsulate,
externalIP: publicIP,
granularity: granularity,
hostname: hostname,
internalIP: privateIP,
ipTables: ipTables,
kiloIface: kiloIface,
nodes: make(map[string]*Node),
peers: make(map[string]*Peer),
port: port,
priv: private,
privIface: privIface,
pub: public,
pubIface: pubIface,
local: local,
stop: make(chan struct{}),
subnet: subnet,
table: route.NewTable(),
tunlIface: tunlIface,
errorCounter: prometheus.NewCounterVec(prometheus.CounterOpts{
Name: "kilo_errors_total",
Help: "Number of errors that occurred while administering the mesh.",
}, []string{"event"}),
nodesGuage: prometheus.NewGauge(prometheus.GaugeOpts{
Name: "kilo_nodes",
Help: "Number of nodes in the mesh.",
}),
peersGuage: prometheus.NewGauge(prometheus.GaugeOpts{
Name: "kilo_peers",
Help: "Number of peers in the mesh.",
}),
reconcileCounter: prometheus.NewCounter(prometheus.CounterOpts{
Name: "kilo_reconciles_total",
Help: "Number of reconciliation attempts.",
}),
logger: logger,
}, nil
}
// Run starts the mesh.
func (m *Mesh) Run() error {
if err := m.Nodes().Init(m.stop); err != nil {
return fmt.Errorf("failed to initialize node backend: %v", err)
}
if err := m.Peers().Init(m.stop); err != nil {
return fmt.Errorf("failed to initialize peer backend: %v", err)
}
ipTablesErrors, err := m.ipTables.Run(m.stop)
if err != nil {
return fmt.Errorf("failed to watch for IP tables updates: %v", err)
}
routeErrors, err := m.table.Run(m.stop)
if err != nil {
return fmt.Errorf("failed to watch for route table updates: %v", err)
}
go func() {
for {
var err error
select {
case err = <-ipTablesErrors:
case err = <-routeErrors:
case <-m.stop:
return
}
if err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("run").Inc()
}
}
}()
defer m.cleanUp()
t := time.NewTimer(resyncPeriod)
nw := m.Nodes().Watch()
pw := m.Peers().Watch()
var ne *NodeEvent
var pe *PeerEvent
for {
select {
case ne = <-nw:
m.syncNodes(ne)
case pe = <-pw:
m.syncPeers(pe)
case <-t.C:
m.checkIn()
if m.cni {
m.updateCNIConfig()
}
m.syncEndpoints()
m.applyTopology()
t.Reset(resyncPeriod)
case <-m.stop:
return nil
}
}
}
// WireGuard updates the endpoints of peers to match the
// last place a valid packet was received from.
// Periodically we need to syncronize the endpoints
// of peers in the backend to match the WireGuard configuration.
func (m *Mesh) syncEndpoints() {
link, err := linkByIndex(m.kiloIface)
if err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("endpoints").Inc()
return
}
conf, err := wireguard.ShowConf(link.Attrs().Name)
if err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("endpoints").Inc()
return
}
m.mu.Lock()
defer m.mu.Unlock()
c := wireguard.Parse(conf)
var key string
var tmp *Peer
for i := range c.Peers {
// Peers are indexed by public key.
key = string(c.Peers[i].PublicKey)
if p, ok := m.peers[key]; ok {
tmp = &Peer{
Name: p.Name,
Peer: *c.Peers[i],
}
if !peersAreEqual(tmp, p) {
p.Endpoint = tmp.Endpoint
if err := m.Peers().Set(p.Name, p); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("endpoints").Inc()
}
}
}
}
}
func (m *Mesh) syncNodes(e *NodeEvent) {
logger := log.With(m.logger, "event", e.Type)
level.Debug(logger).Log("msg", "syncing nodes", "event", e.Type)
if isSelf(m.hostname, e.Node) {
level.Debug(logger).Log("msg", "processing local node", "node", e.Node)
m.handleLocal(e.Node)
return
}
var diff bool
m.mu.Lock()
if !e.Node.Ready() {
level.Debug(logger).Log("msg", "received incomplete node", "node", e.Node)
// An existing node is no longer valid
// so remove it from the mesh.
if _, ok := m.nodes[e.Node.Name]; ok {
level.Info(logger).Log("msg", "node is no longer ready", "node", e.Node)
diff = true
}
} else {
switch e.Type {
case AddEvent:
fallthrough
case UpdateEvent:
if !nodesAreEqual(m.nodes[e.Node.Name], e.Node) {
diff = true
}
// Even if the nodes are the same,
// overwrite the old node to update the timestamp.
m.nodes[e.Node.Name] = e.Node
case DeleteEvent:
delete(m.nodes, e.Node.Name)
diff = true
}
}
m.mu.Unlock()
if diff {
level.Info(logger).Log("node", e.Node)
m.applyTopology()
}
}
func (m *Mesh) syncPeers(e *PeerEvent) {
logger := log.With(m.logger, "event", e.Type)
level.Debug(logger).Log("msg", "syncing peers", "event", e.Type)
var diff bool
m.mu.Lock()
// Peers are indexed by public key.
key := string(e.Peer.PublicKey)
if !e.Peer.Ready() {
level.Debug(logger).Log("msg", "received incomplete peer", "peer", e.Peer)
// An existing peer is no longer valid
// so remove it from the mesh.
if _, ok := m.peers[key]; ok {
level.Info(logger).Log("msg", "peer is no longer ready", "peer", e.Peer)
diff = true
}
} else {
switch e.Type {
case AddEvent:
fallthrough
case UpdateEvent:
if e.Old != nil && key != string(e.Old.PublicKey) {
delete(m.peers, string(e.Old.PublicKey))
diff = true
}
if !peersAreEqual(m.peers[key], e.Peer) {
m.peers[key] = e.Peer
diff = true
}
case DeleteEvent:
delete(m.peers, key)
diff = true
}
}
m.mu.Unlock()
if diff {
level.Info(logger).Log("peer", e.Peer)
m.applyTopology()
}
}
// checkIn will try to update the local node's LastSeen timestamp
// in the backend.
func (m *Mesh) checkIn() {
m.mu.Lock()
defer m.mu.Unlock()
n := m.nodes[m.hostname]
if n == nil {
level.Debug(m.logger).Log("msg", "no local node found in backend")
return
}
oldTime := n.LastSeen
n.LastSeen = time.Now().Unix()
if err := m.Nodes().Set(m.hostname, n); err != nil {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to set local node: %v", err), "node", n)
m.errorCounter.WithLabelValues("checkin").Inc()
// Revert time.
n.LastSeen = oldTime
return
}
level.Debug(m.logger).Log("msg", "successfully checked in local node in backend")
}
func (m *Mesh) handleLocal(n *Node) {
// Allow the external IP to be overridden.
if n.ExternalIP == nil {
n.ExternalIP = m.externalIP
}
// Compare the given node to the calculated local node.
// Take leader, location, and subnet from the argument, as these
// are not determined by kilo.
local := &Node{
ExternalIP: n.ExternalIP,
Key: m.pub,
InternalIP: m.internalIP,
LastSeen: time.Now().Unix(),
Leader: n.Leader,
Location: n.Location,
Name: m.hostname,
Subnet: n.Subnet,
WireGuardIP: m.wireGuardIP,
}
if !nodesAreEqual(n, local) {
level.Debug(m.logger).Log("msg", "local node differs from backend")
if err := m.Nodes().Set(m.hostname, local); err != nil {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to set local node: %v", err), "node", local)
m.errorCounter.WithLabelValues("local").Inc()
return
}
level.Debug(m.logger).Log("msg", "successfully reconciled local node against backend")
}
m.mu.Lock()
n = m.nodes[m.hostname]
if n == nil {
n = &Node{}
}
m.mu.Unlock()
if !nodesAreEqual(n, local) {
m.mu.Lock()
m.nodes[local.Name] = local
m.mu.Unlock()
m.applyTopology()
}
}
func (m *Mesh) applyTopology() {
m.reconcileCounter.Inc()
m.mu.Lock()
defer m.mu.Unlock()
// Ensure only ready nodes are considered.
nodes := make(map[string]*Node)
var readyNodes float64
for k := range m.nodes {
if !m.nodes[k].Ready() {
continue
}
nodes[k] = m.nodes[k]
readyNodes++
}
// Ensure only ready nodes are considered.
peers := make(map[string]*Peer)
var readyPeers float64
for k := range m.peers {
if !m.peers[k].Ready() {
continue
}
peers[k] = m.peers[k]
readyPeers++
}
m.nodesGuage.Set(readyNodes)
m.peersGuage.Set(readyPeers)
// We cannot do anything with the topology until the local node is available.
if nodes[m.hostname] == nil {
return
}
t, err := NewTopology(nodes, peers, m.granularity, m.hostname, m.port, m.priv, m.subnet)
if err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
// Update the node's WireGuard IP.
m.wireGuardIP = t.wireGuardCIDR
conf := t.Conf()
buf, err := conf.Bytes()
if err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
}
if err := ioutil.WriteFile(ConfPath, buf, 0600); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
rules := iptables.ForwardRules(m.subnet)
var peerCIDRs []*net.IPNet
for _, p := range peers {
rules = append(rules, iptables.ForwardRules(p.AllowedIPs...)...)
peerCIDRs = append(peerCIDRs, p.AllowedIPs...)
}
rules = append(rules, iptables.MasqueradeRules(m.subnet, oneAddressCIDR(t.privateIP.IP), nodes[m.hostname].Subnet, t.RemoteSubnets(), peerCIDRs)...)
// If we are handling local routes, ensure the local
// tunnel has an IP address and IPIP traffic is allowed.
if m.encapsulate != NeverEncapsulate && m.local {
var cidrs []*net.IPNet
for _, s := range t.segments {
if s.location == nodes[m.hostname].Location {
for i := range s.privateIPs {
cidrs = append(cidrs, oneAddressCIDR(s.privateIPs[i]))
}
break
}
}
rules = append(rules, iptables.EncapsulateRules(cidrs)...)
// If we are handling local routes, ensure the local
// tunnel has an IP address.
if err := iproute.SetAddress(m.tunlIface, oneAddressCIDR(newAllocator(*nodes[m.hostname].Subnet).next().IP)); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
}
if err := m.ipTables.Set(rules); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
if t.leader {
if err := iproute.SetAddress(m.kiloIface, t.wireGuardCIDR); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
link, err := linkByIndex(m.kiloIface)
if err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
oldConf, err := wireguard.ShowConf(link.Attrs().Name)
if err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
// Setting the WireGuard configuration interrupts existing connections
// so only set the configuration if it has changed.
equal := conf.Equal(wireguard.Parse(oldConf))
if !equal {
level.Info(m.logger).Log("msg", "WireGuard configurations are different")
if err := wireguard.SetConf(link.Attrs().Name, ConfPath); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
}
if err := iproute.Set(m.kiloIface, true); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
} else {
level.Debug(m.logger).Log("msg", "local node is not the leader")
if err := iproute.Set(m.kiloIface, false); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
}
}
// We need to add routes last since they may depend
// on the WireGuard interface.
routes := t.Routes(m.kiloIface, m.privIface, m.tunlIface, m.local, m.encapsulate)
if err := m.table.Set(routes); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
}
}
// RegisterMetrics registers Prometheus metrics on the given Prometheus
// registerer.
func (m *Mesh) RegisterMetrics(r prometheus.Registerer) {
r.MustRegister(
m.errorCounter,
m.nodesGuage,
m.peersGuage,
m.reconcileCounter,
)
}
// Stop stops the mesh.
func (m *Mesh) Stop() {
close(m.stop)
}
func (m *Mesh) cleanUp() {
if err := m.ipTables.CleanUp(); err != nil {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up IP tables: %v", err))
m.errorCounter.WithLabelValues("cleanUp").Inc()
}
if err := m.table.CleanUp(); err != nil {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up routes: %v", err))
m.errorCounter.WithLabelValues("cleanUp").Inc()
}
if err := os.Remove(ConfPath); err != nil {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to delete configuration file: %v", err))
m.errorCounter.WithLabelValues("cleanUp").Inc()
}
if err := iproute.RemoveInterface(m.kiloIface); err != nil {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to remove WireGuard interface: %v", err))
m.errorCounter.WithLabelValues("cleanUp").Inc()
}
if err := m.Nodes().CleanUp(m.hostname); err != nil {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up node backend: %v", err))
m.errorCounter.WithLabelValues("cleanUp").Inc()
}
if err := m.Peers().CleanUp(m.hostname); err != nil {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up peer backend: %v", err))
m.errorCounter.WithLabelValues("cleanUp").Inc()
}
}
func isSelf(hostname string, node *Node) bool {
return node != nil && node.Name == hostname
}
func nodesAreEqual(a, b *Node) bool {
if !(a != nil) == (b != nil) {
return false
}
if a == b {
return true
}
// Ignore LastSeen when comparing equality we want to check if the nodes are
// equivalent. However, we do want to check if LastSeen has transitioned
// between valid and invalid.
return ipNetsEqual(a.ExternalIP, b.ExternalIP) && string(a.Key) == string(b.Key) && ipNetsEqual(a.WireGuardIP, b.WireGuardIP) && ipNetsEqual(a.InternalIP, b.InternalIP) && a.Leader == b.Leader && a.Location == b.Location && a.Name == b.Name && subnetsEqual(a.Subnet, b.Subnet) && a.Ready() == b.Ready()
}
func peersAreEqual(a, b *Peer) bool {
if !(a != nil) == (b != nil) {
return false
}
if a == b {
return true
}
if !(a.Endpoint != nil) == (b.Endpoint != nil) {
return false
}
if a.Endpoint != nil {
if !a.Endpoint.IP.Equal(b.Endpoint.IP) || a.Endpoint.Port != b.Endpoint.Port {
return false
}
}
if len(a.AllowedIPs) != len(b.AllowedIPs) {
return false
}
for i := range a.AllowedIPs {
if !ipNetsEqual(a.AllowedIPs[i], b.AllowedIPs[i]) {
return false
}
}
return string(a.PublicKey) == string(b.PublicKey) && a.PersistentKeepalive == b.PersistentKeepalive
}
func ipNetsEqual(a, b *net.IPNet) bool {
if a == nil && b == nil {
return true
}
if (a != nil) != (b != nil) {
return false
}
if a.Mask.String() != b.Mask.String() {
return false
}
return a.IP.Equal(b.IP)
}
func subnetsEqual(a, b *net.IPNet) bool {
if a == nil && b == nil {
return true
}
if (a != nil) != (b != nil) {
return false
}
if a.Mask.String() != b.Mask.String() {
return false
}
if !a.Contains(b.IP) {
return false
}
if !b.Contains(a.IP) {
return false
}
return true
}
func linkByIndex(index int) (netlink.Link, error) {
link, err := netlink.LinkByIndex(index)
if err != nil {
return nil, fmt.Errorf("failed to get interface: %v", err)
}
return link, nil
}