kilo/vendor/github.com/vishvananda/netlink/conntrack_linux.go
Lucas Servén Marín 8cadff2b79
CNI: bump to 1.0.1 (#297)
* CNI: bump to 1.0.1

This commit bumps the declared version of CNI in the Kilo manifests to
1.0.1. This is possible with no changes to the configuration lists
because our simple configuration is not affected by any of the
deprecations, and there was effectively no change between 0.4.0 and
1.0.0, other than the declaration of a stable API. Similarly, this
commit also bumps the version of the CNI library and the plugins
package.

Bumping to CNI 1.0.0 will help ensure that Kilo stays compatible with
container runtimes in the future.

Signed-off-by: Lucas Servén Marín <lserven@gmail.com>

* vendor: revendor

Signed-off-by: Lucas Servén Marín <lserven@gmail.com>
2022-04-18 19:00:37 +02:00

455 lines
16 KiB
Go

package netlink
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"net"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// ConntrackTableType Conntrack table for the netlink operation
type ConntrackTableType uint8
const (
// ConntrackTable Conntrack table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK 1
ConntrackTable = 1
// ConntrackExpectTable Conntrack expect table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK_EXP 2
ConntrackExpectTable = 2
)
const (
// backward compatibility with golang 1.6 which does not have io.SeekCurrent
seekCurrent = 1
)
// InetFamily Family type
type InetFamily uint8
// -L [table] [options] List conntrack or expectation table
// -G [table] parameters Get conntrack or expectation
// -I [table] parameters Create a conntrack or expectation
// -U [table] parameters Update a conntrack
// -E [table] [options] Show events
// -C [table] Show counter
// -S Show statistics
// ConntrackTableList returns the flow list of a table of a specific family
// conntrack -L [table] [options] List conntrack or expectation table
func ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
return pkgHandle.ConntrackTableList(table, family)
}
// ConntrackTableFlush flushes all the flows of a specified table
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func ConntrackTableFlush(table ConntrackTableType) error {
return pkgHandle.ConntrackTableFlush(table)
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter
// conntrack -D [table] parameters Delete conntrack or expectation
func ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
return pkgHandle.ConntrackDeleteFilter(table, family, filter)
}
// ConntrackTableList returns the flow list of a table of a specific family using the netlink handle passed
// conntrack -L [table] [options] List conntrack or expectation table
func (h *Handle) ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
res, err := h.dumpConntrackTable(table, family)
if err != nil {
return nil, err
}
// Deserialize all the flows
var result []*ConntrackFlow
for _, dataRaw := range res {
result = append(result, parseRawData(dataRaw))
}
return result, nil
}
// ConntrackTableFlush flushes all the flows of a specified table using the netlink handle passed
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func (h *Handle) ConntrackTableFlush(table ConntrackTableType) error {
req := h.newConntrackRequest(table, unix.AF_INET, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
_, err := req.Execute(unix.NETLINK_NETFILTER, 0)
return err
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter using the netlink handle passed
// conntrack -D [table] parameters Delete conntrack or expectation
func (h *Handle) ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
res, err := h.dumpConntrackTable(table, family)
if err != nil {
return 0, err
}
var matched uint
for _, dataRaw := range res {
flow := parseRawData(dataRaw)
if match := filter.MatchConntrackFlow(flow); match {
req2 := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
// skip the first 4 byte that are the netfilter header, the newConntrackRequest is adding it already
req2.AddRawData(dataRaw[4:])
req2.Execute(unix.NETLINK_NETFILTER, 0)
matched++
}
}
return matched, nil
}
func (h *Handle) newConntrackRequest(table ConntrackTableType, family InetFamily, operation, flags int) *nl.NetlinkRequest {
// Create the Netlink request object
req := h.newNetlinkRequest((int(table)<<8)|operation, flags)
// Add the netfilter header
msg := &nl.Nfgenmsg{
NfgenFamily: uint8(family),
Version: nl.NFNETLINK_V0,
ResId: 0,
}
req.AddData(msg)
return req
}
func (h *Handle) dumpConntrackTable(table ConntrackTableType, family InetFamily) ([][]byte, error) {
req := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_GET, unix.NLM_F_DUMP)
return req.Execute(unix.NETLINK_NETFILTER, 0)
}
// The full conntrack flow structure is very complicated and can be found in the file:
// http://git.netfilter.org/libnetfilter_conntrack/tree/include/internal/object.h
// For the time being, the structure below allows to parse and extract the base information of a flow
type ipTuple struct {
Bytes uint64
DstIP net.IP
DstPort uint16
Packets uint64
Protocol uint8
SrcIP net.IP
SrcPort uint16
}
type ConntrackFlow struct {
FamilyType uint8
Forward ipTuple
Reverse ipTuple
Mark uint32
}
func (s *ConntrackFlow) String() string {
// conntrack cmd output:
// udp 17 src=127.0.0.1 dst=127.0.0.1 sport=4001 dport=1234 packets=5 bytes=532 [UNREPLIED] src=127.0.0.1 dst=127.0.0.1 sport=1234 dport=4001 packets=10 bytes=1078 mark=0
return fmt.Sprintf("%s\t%d src=%s dst=%s sport=%d dport=%d packets=%d bytes=%d\tsrc=%s dst=%s sport=%d dport=%d packets=%d bytes=%d mark=%d",
nl.L4ProtoMap[s.Forward.Protocol], s.Forward.Protocol,
s.Forward.SrcIP.String(), s.Forward.DstIP.String(), s.Forward.SrcPort, s.Forward.DstPort, s.Forward.Packets, s.Forward.Bytes,
s.Reverse.SrcIP.String(), s.Reverse.DstIP.String(), s.Reverse.SrcPort, s.Reverse.DstPort, s.Reverse.Packets, s.Reverse.Bytes,
s.Mark)
}
// This method parse the ip tuple structure
// The message structure is the following:
// <len, [CTA_IP_V4_SRC|CTA_IP_V6_SRC], 16 bytes for the IP>
// <len, [CTA_IP_V4_DST|CTA_IP_V6_DST], 16 bytes for the IP>
// <len, NLA_F_NESTED|nl.CTA_TUPLE_PROTO, 1 byte for the protocol, 3 bytes of padding>
// <len, CTA_PROTO_SRC_PORT, 2 bytes for the source port, 2 bytes of padding>
// <len, CTA_PROTO_DST_PORT, 2 bytes for the source port, 2 bytes of padding>
func parseIpTuple(reader *bytes.Reader, tpl *ipTuple) uint8 {
for i := 0; i < 2; i++ {
_, t, _, v := parseNfAttrTLV(reader)
switch t {
case nl.CTA_IP_V4_SRC, nl.CTA_IP_V6_SRC:
tpl.SrcIP = v
case nl.CTA_IP_V4_DST, nl.CTA_IP_V6_DST:
tpl.DstIP = v
}
}
// Skip the next 4 bytes nl.NLA_F_NESTED|nl.CTA_TUPLE_PROTO
reader.Seek(4, seekCurrent)
_, t, _, v := parseNfAttrTLV(reader)
if t == nl.CTA_PROTO_NUM {
tpl.Protocol = uint8(v[0])
}
// Skip some padding 3 bytes
reader.Seek(3, seekCurrent)
for i := 0; i < 2; i++ {
_, t, _ := parseNfAttrTL(reader)
switch t {
case nl.CTA_PROTO_SRC_PORT:
parseBERaw16(reader, &tpl.SrcPort)
case nl.CTA_PROTO_DST_PORT:
parseBERaw16(reader, &tpl.DstPort)
}
// Skip some padding 2 byte
reader.Seek(2, seekCurrent)
}
return tpl.Protocol
}
func parseNfAttrTLV(r *bytes.Reader) (isNested bool, attrType, len uint16, value []byte) {
isNested, attrType, len = parseNfAttrTL(r)
value = make([]byte, len)
binary.Read(r, binary.BigEndian, &value)
return isNested, attrType, len, value
}
func parseNfAttrTL(r *bytes.Reader) (isNested bool, attrType, len uint16) {
binary.Read(r, nl.NativeEndian(), &len)
len -= nl.SizeofNfattr
binary.Read(r, nl.NativeEndian(), &attrType)
isNested = (attrType & nl.NLA_F_NESTED) == nl.NLA_F_NESTED
attrType = attrType & (nl.NLA_F_NESTED - 1)
return isNested, attrType, len
}
func parseBERaw16(r *bytes.Reader, v *uint16) {
binary.Read(r, binary.BigEndian, v)
}
func parseBERaw32(r *bytes.Reader, v *uint32) {
binary.Read(r, binary.BigEndian, v)
}
func parseBERaw64(r *bytes.Reader, v *uint64) {
binary.Read(r, binary.BigEndian, v)
}
func parseByteAndPacketCounters(r *bytes.Reader) (bytes, packets uint64) {
for i := 0; i < 2; i++ {
switch _, t, _ := parseNfAttrTL(r); t {
case nl.CTA_COUNTERS_BYTES:
parseBERaw64(r, &bytes)
case nl.CTA_COUNTERS_PACKETS:
parseBERaw64(r, &packets)
default:
return
}
}
return
}
func parseConnectionMark(r *bytes.Reader) (mark uint32) {
parseBERaw32(r, &mark)
return
}
func parseRawData(data []byte) *ConntrackFlow {
s := &ConntrackFlow{}
// First there is the Nfgenmsg header
// consume only the family field
reader := bytes.NewReader(data)
binary.Read(reader, nl.NativeEndian(), &s.FamilyType)
// skip rest of the Netfilter header
reader.Seek(3, seekCurrent)
// The message structure is the following:
// <len, NLA_F_NESTED|CTA_TUPLE_ORIG> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the forward flow
// <len, NLA_F_NESTED|CTA_TUPLE_REPLY> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the reverse flow
for reader.Len() > 0 {
if nested, t, l := parseNfAttrTL(reader); nested {
switch t {
case nl.CTA_TUPLE_ORIG:
if nested, t, _ = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
parseIpTuple(reader, &s.Forward)
}
case nl.CTA_TUPLE_REPLY:
if nested, t, _ = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
parseIpTuple(reader, &s.Reverse)
} else {
// Header not recognized skip it
reader.Seek(int64(l), seekCurrent)
}
case nl.CTA_COUNTERS_ORIG:
s.Forward.Bytes, s.Forward.Packets = parseByteAndPacketCounters(reader)
case nl.CTA_COUNTERS_REPLY:
s.Reverse.Bytes, s.Reverse.Packets = parseByteAndPacketCounters(reader)
}
} else {
switch t {
case nl.CTA_MARK:
s.Mark = parseConnectionMark(reader)
}
}
}
return s
}
// Conntrack parameters and options:
// -n, --src-nat ip source NAT ip
// -g, --dst-nat ip destination NAT ip
// -j, --any-nat ip source or destination NAT ip
// -m, --mark mark Set mark
// -c, --secmark secmark Set selinux secmark
// -e, --event-mask eventmask Event mask, eg. NEW,DESTROY
// -z, --zero Zero counters while listing
// -o, --output type[,...] Output format, eg. xml
// -l, --label label[,...] conntrack labels
// Common parameters and options:
// -s, --src, --orig-src ip Source address from original direction
// -d, --dst, --orig-dst ip Destination address from original direction
// -r, --reply-src ip Source address from reply direction
// -q, --reply-dst ip Destination address from reply direction
// -p, --protonum proto Layer 4 Protocol, eg. 'tcp'
// -f, --family proto Layer 3 Protocol, eg. 'ipv6'
// -t, --timeout timeout Set timeout
// -u, --status status Set status, eg. ASSURED
// -w, --zone value Set conntrack zone
// --orig-zone value Set zone for original direction
// --reply-zone value Set zone for reply direction
// -b, --buffer-size Netlink socket buffer size
// --mask-src ip Source mask address
// --mask-dst ip Destination mask address
// Layer 4 Protocol common parameters and options:
// TCP, UDP, SCTP, UDPLite and DCCP
// --sport, --orig-port-src port Source port in original direction
// --dport, --orig-port-dst port Destination port in original direction
// Filter types
type ConntrackFilterType uint8
const (
ConntrackOrigSrcIP = iota // -orig-src ip Source address from original direction
ConntrackOrigDstIP // -orig-dst ip Destination address from original direction
ConntrackReplySrcIP // --reply-src ip Reply Source IP
ConntrackReplyDstIP // --reply-dst ip Reply Destination IP
ConntrackReplyAnyIP // Match source or destination reply IP
ConntrackOrigSrcPort // --orig-port-src port Source port in original direction
ConntrackOrigDstPort // --orig-port-dst port Destination port in original direction
ConntrackNatSrcIP = ConntrackReplySrcIP // deprecated use instead ConntrackReplySrcIP
ConntrackNatDstIP = ConntrackReplyDstIP // deprecated use instead ConntrackReplyDstIP
ConntrackNatAnyIP = ConntrackReplyAnyIP // deprecated use instead ConntrackReplyAnyIP
)
type CustomConntrackFilter interface {
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches
// the filter or false otherwise
MatchConntrackFlow(flow *ConntrackFlow) bool
}
type ConntrackFilter struct {
ipFilter map[ConntrackFilterType]net.IP
portFilter map[ConntrackFilterType]uint16
protoFilter uint8
}
// AddIP adds an IP to the conntrack filter
func (f *ConntrackFilter) AddIP(tp ConntrackFilterType, ip net.IP) error {
if f.ipFilter == nil {
f.ipFilter = make(map[ConntrackFilterType]net.IP)
}
if _, ok := f.ipFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.ipFilter[tp] = ip
return nil
}
// AddPort adds a Port to the conntrack filter if the Layer 4 protocol allows it
func (f *ConntrackFilter) AddPort(tp ConntrackFilterType, port uint16) error {
switch f.protoFilter {
// TCP, UDP, DCCP, SCTP, UDPLite
case 6, 17, 33, 132, 136:
default:
return fmt.Errorf("Filter attribute not available without a valid Layer 4 protocol: %d", f.protoFilter)
}
if f.portFilter == nil {
f.portFilter = make(map[ConntrackFilterType]uint16)
}
if _, ok := f.portFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.portFilter[tp] = port
return nil
}
// AddProtocol adds the Layer 4 protocol to the conntrack filter
func (f *ConntrackFilter) AddProtocol(proto uint8) error {
if f.protoFilter != 0 {
return errors.New("Filter attribute already present")
}
f.protoFilter = proto
return nil
}
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches the filter
// false otherwise
func (f *ConntrackFilter) MatchConntrackFlow(flow *ConntrackFlow) bool {
if len(f.ipFilter) == 0 && len(f.portFilter) == 0 && f.protoFilter == 0 {
// empty filter always not match
return false
}
// -p, --protonum proto Layer 4 Protocol, eg. 'tcp'
if f.protoFilter != 0 && flow.Forward.Protocol != f.protoFilter {
// different Layer 4 protocol always not match
return false
}
match := true
// IP conntrack filter
if len(f.ipFilter) > 0 {
// -orig-src ip Source address from original direction
if elem, found := f.ipFilter[ConntrackOrigSrcIP]; found {
match = match && elem.Equal(flow.Forward.SrcIP)
}
// -orig-dst ip Destination address from original direction
if elem, found := f.ipFilter[ConntrackOrigDstIP]; match && found {
match = match && elem.Equal(flow.Forward.DstIP)
}
// -src-nat ip Source NAT ip
if elem, found := f.ipFilter[ConntrackReplySrcIP]; match && found {
match = match && elem.Equal(flow.Reverse.SrcIP)
}
// -dst-nat ip Destination NAT ip
if elem, found := f.ipFilter[ConntrackReplyDstIP]; match && found {
match = match && elem.Equal(flow.Reverse.DstIP)
}
// Match source or destination reply IP
if elem, found := f.ipFilter[ConntrackReplyAnyIP]; match && found {
match = match && (elem.Equal(flow.Reverse.SrcIP) || elem.Equal(flow.Reverse.DstIP))
}
}
// Layer 4 Port filter
if len(f.portFilter) > 0 {
// -orig-port-src port Source port from original direction
if elem, found := f.portFilter[ConntrackOrigSrcPort]; match && found {
match = match && elem == flow.Forward.SrcPort
}
// -orig-port-dst port Destination port from original direction
if elem, found := f.portFilter[ConntrackOrigDstPort]; match && found {
match = match && elem == flow.Forward.DstPort
}
}
return match
}
var _ CustomConntrackFilter = (*ConntrackFilter)(nil)