// Copyright 2019 the Kilo authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package mesh import ( "bytes" "fmt" "io/ioutil" "net" "os" "sync" "time" "github.com/go-kit/kit/log" "github.com/go-kit/kit/log/level" "github.com/prometheus/client_golang/prometheus" "github.com/vishvananda/netlink" "github.com/squat/kilo/pkg/encapsulation" "github.com/squat/kilo/pkg/iproute" "github.com/squat/kilo/pkg/iptables" "github.com/squat/kilo/pkg/route" "github.com/squat/kilo/pkg/wireguard" ) const resyncPeriod = 30 * time.Second const ( // KiloPath is the directory where Kilo stores its configuration. KiloPath = "/var/lib/kilo" // PrivateKeyPath is the filepath where the WireGuard private key is stored. PrivateKeyPath = KiloPath + "/key" // ConfPath is the filepath where the WireGuard configuration is stored. ConfPath = KiloPath + "/conf" // DefaultKiloInterface is the default iterface created and used by Kilo. DefaultKiloInterface = "kilo0" // DefaultKiloPort is the default UDP port Kilo uses. DefaultKiloPort = 51820 // DefaultCNIPath is the default path to the CNI config file. DefaultCNIPath = "/etc/cni/net.d/10-kilo.conflist" ) // DefaultKiloSubnet is the default CIDR for Kilo. var DefaultKiloSubnet = &net.IPNet{IP: []byte{10, 4, 0, 0}, Mask: []byte{255, 255, 0, 0}} // Granularity represents the abstraction level at which the network // should be meshed. type Granularity string const ( // LogicalGranularity indicates that the network should create // a mesh between logical locations, e.g. data-centers, but not between // all nodes within a single location. LogicalGranularity Granularity = "location" // FullGranularity indicates that the network should create // a mesh between every node. FullGranularity Granularity = "full" ) // Node represents a node in the network. type Node struct { Endpoint *wireguard.Endpoint Key []byte InternalIP *net.IPNet // LastSeen is a Unix time for the last time // the node confirmed it was live. LastSeen int64 // Leader is a suggestion to Kilo that // the node wants to lead its segment. Leader bool Location string Name string PersistentKeepalive int Subnet *net.IPNet WireGuardIP *net.IPNet } // Ready indicates whether or not the node is ready. func (n *Node) Ready() bool { // Nodes that are not leaders will not have WireGuardIPs, so it is not required. return n != nil && n.Endpoint != nil && !(n.Endpoint.IP == nil && n.Endpoint.DNS == "") && n.Endpoint.Port != 0 && n.Key != nil && n.InternalIP != nil && n.Subnet != nil && time.Now().Unix()-n.LastSeen < int64(resyncPeriod)*2/int64(time.Second) } // Peer represents a peer in the network. type Peer struct { wireguard.Peer Name string } // Ready indicates whether or not the peer is ready. // Peers can have empty endpoints because they may not have an // IP, for example if they are behind a NAT, and thus // will not declare their endpoint and instead allow it to be // discovered. func (p *Peer) Ready() bool { return p != nil && p.AllowedIPs != nil && len(p.AllowedIPs) != 0 && p.PublicKey != nil } // EventType describes what kind of an action an event represents. type EventType string const ( // AddEvent represents an action where an item was added. AddEvent EventType = "add" // DeleteEvent represents an action where an item was removed. DeleteEvent EventType = "delete" // UpdateEvent represents an action where an item was updated. UpdateEvent EventType = "update" ) // NodeEvent represents an event concerning a node in the cluster. type NodeEvent struct { Type EventType Node *Node Old *Node } // PeerEvent represents an event concerning a peer in the cluster. type PeerEvent struct { Type EventType Peer *Peer Old *Peer } // Backend can create clients for all of the // primitive types that Kilo deals with, namely: // * nodes; and // * peers. type Backend interface { Nodes() NodeBackend Peers() PeerBackend } // NodeBackend can get nodes by name, init itself, // list the nodes that should be meshed, // set Kilo properties for a node, // clean up any changes applied to the backend, // and watch for changes to nodes. type NodeBackend interface { CleanUp(string) error Get(string) (*Node, error) Init(<-chan struct{}) error List() ([]*Node, error) Set(string, *Node) error Watch() <-chan *NodeEvent } // PeerBackend can get peers by name, init itself, // list the peers that should be in the mesh, // set fields for a peer, // clean up any changes applied to the backend, // and watch for changes to peers. type PeerBackend interface { CleanUp(string) error Get(string) (*Peer, error) Init(<-chan struct{}) error List() ([]*Peer, error) Set(string, *Peer) error Watch() <-chan *PeerEvent } // Mesh is able to create Kilo network meshes. type Mesh struct { Backend cleanUpIface bool cni bool cniPath string enc encapsulation.Encapsulator externalIP *net.IPNet granularity Granularity hostname string internalIP *net.IPNet ipTables *iptables.Controller kiloIface int key []byte local bool port uint32 priv []byte privIface int pub []byte stop chan struct{} subnet *net.IPNet table *route.Table wireGuardIP *net.IPNet // nodes and peers are mutable fields in the struct // and needs to be guarded. nodes map[string]*Node peers map[string]*Peer mu sync.Mutex errorCounter *prometheus.CounterVec nodesGuage prometheus.Gauge peersGuage prometheus.Gauge reconcileCounter prometheus.Counter logger log.Logger } // New returns a new Mesh instance. func New(backend Backend, enc encapsulation.Encapsulator, granularity Granularity, hostname string, port uint32, subnet *net.IPNet, local, cni bool, cniPath, iface string, cleanUpIface bool, logger log.Logger) (*Mesh, error) { if err := os.MkdirAll(KiloPath, 0700); err != nil { return nil, fmt.Errorf("failed to create directory to store configuration: %v", err) } private, err := ioutil.ReadFile(PrivateKeyPath) private = bytes.Trim(private, "\n") if err != nil { level.Warn(logger).Log("msg", "no private key found on disk; generating one now") if private, err = wireguard.GenKey(); err != nil { return nil, err } } public, err := wireguard.PubKey(private) if err != nil { return nil, err } if err := ioutil.WriteFile(PrivateKeyPath, private, 0600); err != nil { return nil, fmt.Errorf("failed to write private key to disk: %v", err) } cniIndex, err := cniDeviceIndex() if err != nil { return nil, fmt.Errorf("failed to query netlink for CNI device: %v", err) } privateIP, publicIP, err := getIP(hostname, enc.Index(), cniIndex) if err != nil { return nil, fmt.Errorf("failed to find public IP: %v", err) } ifaces, err := interfacesForIP(privateIP) if err != nil { return nil, fmt.Errorf("failed to find interface for private IP: %v", err) } privIface := ifaces[0].Index kiloIface, _, err := wireguard.New(iface) if err != nil { return nil, fmt.Errorf("failed to create WireGuard interface: %v", err) } if enc.Strategy() != encapsulation.Never { if err := enc.Init(privIface); err != nil { return nil, fmt.Errorf("failed to initialize encapsulator: %v", err) } } level.Debug(logger).Log("msg", fmt.Sprintf("using %s as the private IP address", privateIP.String())) level.Debug(logger).Log("msg", fmt.Sprintf("using %s as the public IP address", publicIP.String())) ipTables, err := iptables.New(len(subnet.IP)) if err != nil { return nil, fmt.Errorf("failed to IP tables controller: %v", err) } return &Mesh{ Backend: backend, cleanUpIface: cleanUpIface, cni: cni, cniPath: cniPath, enc: enc, externalIP: publicIP, granularity: granularity, hostname: hostname, internalIP: privateIP, ipTables: ipTables, kiloIface: kiloIface, nodes: make(map[string]*Node), peers: make(map[string]*Peer), port: port, priv: private, privIface: privIface, pub: public, local: local, stop: make(chan struct{}), subnet: subnet, table: route.NewTable(), errorCounter: prometheus.NewCounterVec(prometheus.CounterOpts{ Name: "kilo_errors_total", Help: "Number of errors that occurred while administering the mesh.", }, []string{"event"}), nodesGuage: prometheus.NewGauge(prometheus.GaugeOpts{ Name: "kilo_nodes", Help: "Number of nodes in the mesh.", }), peersGuage: prometheus.NewGauge(prometheus.GaugeOpts{ Name: "kilo_peers", Help: "Number of peers in the mesh.", }), reconcileCounter: prometheus.NewCounter(prometheus.CounterOpts{ Name: "kilo_reconciles_total", Help: "Number of reconciliation attempts.", }), logger: logger, }, nil } // Run starts the mesh. func (m *Mesh) Run() error { if err := m.Nodes().Init(m.stop); err != nil { return fmt.Errorf("failed to initialize node backend: %v", err) } // Try to set the CNI config quickly. if m.cni { if n, err := m.Nodes().Get(m.hostname); err == nil { m.nodes[m.hostname] = n m.updateCNIConfig() } else { level.Warn(m.logger).Log("error", fmt.Errorf("failed to get node %q: %v", m.hostname, err)) } } if err := m.Peers().Init(m.stop); err != nil { return fmt.Errorf("failed to initialize peer backend: %v", err) } ipTablesErrors, err := m.ipTables.Run(m.stop) if err != nil { return fmt.Errorf("failed to watch for IP tables updates: %v", err) } routeErrors, err := m.table.Run(m.stop) if err != nil { return fmt.Errorf("failed to watch for route table updates: %v", err) } go func() { for { var err error select { case err = <-ipTablesErrors: case err = <-routeErrors: case <-m.stop: return } if err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("run").Inc() } } }() defer m.cleanUp() t := time.NewTimer(resyncPeriod) nw := m.Nodes().Watch() pw := m.Peers().Watch() var ne *NodeEvent var pe *PeerEvent for { select { case ne = <-nw: m.syncNodes(ne) case pe = <-pw: m.syncPeers(pe) case <-t.C: m.checkIn() if m.cni { m.updateCNIConfig() } m.applyTopology() t.Reset(resyncPeriod) case <-m.stop: return nil } } } func (m *Mesh) syncNodes(e *NodeEvent) { logger := log.With(m.logger, "event", e.Type) level.Debug(logger).Log("msg", "syncing nodes", "event", e.Type) if isSelf(m.hostname, e.Node) { level.Debug(logger).Log("msg", "processing local node", "node", e.Node) m.handleLocal(e.Node) return } var diff bool m.mu.Lock() if !e.Node.Ready() { level.Debug(logger).Log("msg", "received incomplete node", "node", e.Node) // An existing node is no longer valid // so remove it from the mesh. if _, ok := m.nodes[e.Node.Name]; ok { level.Info(logger).Log("msg", "node is no longer ready", "node", e.Node) diff = true } } else { switch e.Type { case AddEvent: fallthrough case UpdateEvent: if !nodesAreEqual(m.nodes[e.Node.Name], e.Node) { diff = true } // Even if the nodes are the same, // overwrite the old node to update the timestamp. m.nodes[e.Node.Name] = e.Node case DeleteEvent: delete(m.nodes, e.Node.Name) diff = true } } m.mu.Unlock() if diff { level.Info(logger).Log("node", e.Node) m.applyTopology() } } func (m *Mesh) syncPeers(e *PeerEvent) { logger := log.With(m.logger, "event", e.Type) level.Debug(logger).Log("msg", "syncing peers", "event", e.Type) var diff bool m.mu.Lock() // Peers are indexed by public key. key := string(e.Peer.PublicKey) if !e.Peer.Ready() { level.Debug(logger).Log("msg", "received incomplete peer", "peer", e.Peer) // An existing peer is no longer valid // so remove it from the mesh. if _, ok := m.peers[key]; ok { level.Info(logger).Log("msg", "peer is no longer ready", "peer", e.Peer) diff = true } } else { switch e.Type { case AddEvent: fallthrough case UpdateEvent: if e.Old != nil && key != string(e.Old.PublicKey) { delete(m.peers, string(e.Old.PublicKey)) diff = true } if !peersAreEqual(m.peers[key], e.Peer) { m.peers[key] = e.Peer diff = true } case DeleteEvent: delete(m.peers, key) diff = true } } m.mu.Unlock() if diff { level.Info(logger).Log("peer", e.Peer) m.applyTopology() } } // checkIn will try to update the local node's LastSeen timestamp // in the backend. func (m *Mesh) checkIn() { m.mu.Lock() defer m.mu.Unlock() n := m.nodes[m.hostname] if n == nil { level.Debug(m.logger).Log("msg", "no local node found in backend") return } oldTime := n.LastSeen n.LastSeen = time.Now().Unix() if err := m.Nodes().Set(m.hostname, n); err != nil { level.Error(m.logger).Log("error", fmt.Sprintf("failed to set local node: %v", err), "node", n) m.errorCounter.WithLabelValues("checkin").Inc() // Revert time. n.LastSeen = oldTime return } level.Debug(m.logger).Log("msg", "successfully checked in local node in backend") } func (m *Mesh) handleLocal(n *Node) { // Allow the IPs to be overridden. if n.Endpoint == nil || (n.Endpoint.DNS == "" && n.Endpoint.IP == nil) { n.Endpoint = &wireguard.Endpoint{DNSOrIP: wireguard.DNSOrIP{IP: m.externalIP.IP}, Port: m.port} } if n.InternalIP == nil { n.InternalIP = m.internalIP } // Compare the given node to the calculated local node. // Take leader, location, and subnet from the argument, as these // are not determined by kilo. local := &Node{ Endpoint: n.Endpoint, Key: m.pub, InternalIP: n.InternalIP, LastSeen: time.Now().Unix(), Leader: n.Leader, Location: n.Location, Name: m.hostname, Subnet: n.Subnet, WireGuardIP: m.wireGuardIP, } if !nodesAreEqual(n, local) { level.Debug(m.logger).Log("msg", "local node differs from backend") if err := m.Nodes().Set(m.hostname, local); err != nil { level.Error(m.logger).Log("error", fmt.Sprintf("failed to set local node: %v", err), "node", local) m.errorCounter.WithLabelValues("local").Inc() return } level.Debug(m.logger).Log("msg", "successfully reconciled local node against backend") } m.mu.Lock() n = m.nodes[m.hostname] if n == nil { n = &Node{} } m.mu.Unlock() if !nodesAreEqual(n, local) { m.mu.Lock() m.nodes[local.Name] = local m.mu.Unlock() m.applyTopology() } } func (m *Mesh) applyTopology() { m.reconcileCounter.Inc() m.mu.Lock() defer m.mu.Unlock() // If we can't resolve an endpoint, then fail and retry later. if err := m.resolveEndpoints(); err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } // Ensure only ready nodes are considered. nodes := make(map[string]*Node) var readyNodes float64 for k := range m.nodes { if !m.nodes[k].Ready() { continue } // Make a shallow copy of the node. node := *m.nodes[k] nodes[k] = &node readyNodes++ } // Ensure only ready nodes are considered. peers := make(map[string]*Peer) var readyPeers float64 for k := range m.peers { if !m.peers[k].Ready() { continue } // Make a shallow copy of the peer. peer := *m.peers[k] peers[k] = &peer readyPeers++ } m.nodesGuage.Set(readyNodes) m.peersGuage.Set(readyPeers) // We cannot do anything with the topology until the local node is available. if nodes[m.hostname] == nil { return } // Find the Kilo interface name. link, err := linkByIndex(m.kiloIface) if err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } // Find the old configuration. oldConfRaw, err := wireguard.ShowConf(link.Attrs().Name) if err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } oldConf := wireguard.Parse(oldConfRaw) updateNATEndpoints(nodes, peers, oldConf) t, err := NewTopology(nodes, peers, m.granularity, m.hostname, nodes[m.hostname].Endpoint.Port, m.priv, m.subnet, nodes[m.hostname].PersistentKeepalive) if err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } // Update the node's WireGuard IP. m.wireGuardIP = t.wireGuardCIDR conf := t.Conf() buf, err := conf.Bytes() if err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } if err := ioutil.WriteFile(ConfPath, buf, 0600); err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } ipRules := iptables.ForwardRules(m.subnet) // If we are handling local routes, ensure the local // tunnel has an IP address and IPIP traffic is allowed. if m.enc.Strategy() != encapsulation.Never && m.local { var cidrs []*net.IPNet for _, s := range t.segments { if s.location == nodes[m.hostname].Location { for i := range s.privateIPs { cidrs = append(cidrs, oneAddressCIDR(s.privateIPs[i])) } break } } ipRules = append(ipRules, m.enc.Rules(cidrs)...) // If we are handling local routes, ensure the local // tunnel has an IP address. if err := m.enc.Set(oneAddressCIDR(newAllocator(*nodes[m.hostname].Subnet).next().IP)); err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } } if err := m.ipTables.Set(ipRules); err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } if t.leader { if err := iproute.SetAddress(m.kiloIface, t.wireGuardCIDR); err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } // Setting the WireGuard configuration interrupts existing connections // so only set the configuration if it has changed. equal := conf.Equal(oldConf) if !equal { level.Info(m.logger).Log("msg", "WireGuard configurations are different") if err := wireguard.SetConf(link.Attrs().Name, ConfPath); err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } } if err := iproute.Set(m.kiloIface, true); err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } } else { level.Debug(m.logger).Log("msg", "local node is not the leader") if err := iproute.Set(m.kiloIface, false); err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() return } } // We need to add routes last since they may depend // on the WireGuard interface. routes, rules := t.Routes(link.Attrs().Name, m.kiloIface, m.privIface, m.enc.Index(), m.local, m.enc) if err := m.table.Set(routes, rules); err != nil { level.Error(m.logger).Log("error", err) m.errorCounter.WithLabelValues("apply").Inc() } } // RegisterMetrics registers Prometheus metrics on the given Prometheus // registerer. func (m *Mesh) RegisterMetrics(r prometheus.Registerer) { r.MustRegister( m.errorCounter, m.nodesGuage, m.peersGuage, m.reconcileCounter, ) } // Stop stops the mesh. func (m *Mesh) Stop() { close(m.stop) } func (m *Mesh) cleanUp() { if err := m.ipTables.CleanUp(); err != nil { level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up IP tables: %v", err)) m.errorCounter.WithLabelValues("cleanUp").Inc() } if err := m.table.CleanUp(); err != nil { level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up routes: %v", err)) m.errorCounter.WithLabelValues("cleanUp").Inc() } if err := os.Remove(ConfPath); err != nil { level.Error(m.logger).Log("error", fmt.Sprintf("failed to delete configuration file: %v", err)) m.errorCounter.WithLabelValues("cleanUp").Inc() } if m.cleanUpIface { if err := iproute.RemoveInterface(m.kiloIface); err != nil { level.Error(m.logger).Log("error", fmt.Sprintf("failed to remove WireGuard interface: %v", err)) m.errorCounter.WithLabelValues("cleanUp").Inc() } } if err := m.Nodes().CleanUp(m.hostname); err != nil { level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up node backend: %v", err)) m.errorCounter.WithLabelValues("cleanUp").Inc() } if err := m.Peers().CleanUp(m.hostname); err != nil { level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up peer backend: %v", err)) m.errorCounter.WithLabelValues("cleanUp").Inc() } if err := m.enc.CleanUp(); err != nil { level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up encapsulator: %v", err)) m.errorCounter.WithLabelValues("cleanUp").Inc() } } func (m *Mesh) resolveEndpoints() error { for k := range m.nodes { // Skip unready nodes, since they will not be used // in the topology anyways. if !m.nodes[k].Ready() { continue } // If the node is ready, then the endpoint is not nil // but it may not have a DNS name. if m.nodes[k].Endpoint.DNS == "" { continue } if err := resolveEndpoint(m.nodes[k].Endpoint); err != nil { return err } } for k := range m.peers { // Skip unready peers, since they will not be used // in the topology anyways. if !m.peers[k].Ready() { continue } // Peers may have nil endpoints. if m.peers[k].Endpoint == nil || m.peers[k].Endpoint.DNS == "" { continue } if err := resolveEndpoint(m.peers[k].Endpoint); err != nil { return err } } return nil } func resolveEndpoint(endpoint *wireguard.Endpoint) error { ips, err := net.LookupIP(endpoint.DNS) if err != nil { return fmt.Errorf("failed to look up DNS name %q: %v", endpoint.DNS, err) } nets := make([]*net.IPNet, len(ips), len(ips)) for i := range ips { nets[i] = oneAddressCIDR(ips[i]) } sortIPs(nets) if len(nets) == 0 { return fmt.Errorf("did not find any addresses for DNS name %q", endpoint.DNS) } endpoint.IP = nets[0].IP return nil } func isSelf(hostname string, node *Node) bool { return node != nil && node.Name == hostname } func nodesAreEqual(a, b *Node) bool { if !(a != nil) == (b != nil) { return false } if a == b { return true } if !(a.Endpoint != nil) == (b.Endpoint != nil) { return false } if a.Endpoint != nil { if a.Endpoint.Port != b.Endpoint.Port { return false } // Check the DNS name first since this package // is doing the DNS resolution. if a.Endpoint.DNS != b.Endpoint.DNS { return false } if a.Endpoint.DNS == "" && !a.Endpoint.IP.Equal(b.Endpoint.IP) { return false } } // Ignore LastSeen when comparing equality we want to check if the nodes are // equivalent. However, we do want to check if LastSeen has transitioned // between valid and invalid. return string(a.Key) == string(b.Key) && ipNetsEqual(a.WireGuardIP, b.WireGuardIP) && ipNetsEqual(a.InternalIP, b.InternalIP) && a.Leader == b.Leader && a.Location == b.Location && a.Name == b.Name && subnetsEqual(a.Subnet, b.Subnet) && a.Ready() == b.Ready() } func peersAreEqual(a, b *Peer) bool { if !(a != nil) == (b != nil) { return false } if a == b { return true } if !(a.Endpoint != nil) == (b.Endpoint != nil) { return false } if a.Endpoint != nil { if a.Endpoint.Port != b.Endpoint.Port { return false } // Check the DNS name first since this package // is doing the DNS resolution. if a.Endpoint.DNS != b.Endpoint.DNS { return false } if a.Endpoint.DNS == "" && !a.Endpoint.IP.Equal(b.Endpoint.IP) { return false } } if len(a.AllowedIPs) != len(b.AllowedIPs) { return false } for i := range a.AllowedIPs { if !ipNetsEqual(a.AllowedIPs[i], b.AllowedIPs[i]) { return false } } return string(a.PublicKey) == string(b.PublicKey) && a.PersistentKeepalive == b.PersistentKeepalive } func ipNetsEqual(a, b *net.IPNet) bool { if a == nil && b == nil { return true } if (a != nil) != (b != nil) { return false } if a.Mask.String() != b.Mask.String() { return false } return a.IP.Equal(b.IP) } func subnetsEqual(a, b *net.IPNet) bool { if a == nil && b == nil { return true } if (a != nil) != (b != nil) { return false } if a.Mask.String() != b.Mask.String() { return false } if !a.Contains(b.IP) { return false } if !b.Contains(a.IP) { return false } return true } func linkByIndex(index int) (netlink.Link, error) { link, err := netlink.LinkByIndex(index) if err != nil { return nil, fmt.Errorf("failed to get interface: %v", err) } return link, nil } // updateNATEndpoints ensures that nodes and peers behind NAT update // their endpoints from the WireGuard configuration so they can roam. func updateNATEndpoints(nodes map[string]*Node, peers map[string]*Peer, conf *wireguard.Conf) { keys := make(map[string]*wireguard.Peer) for i := range conf.Peers { keys[string(conf.Peers[i].PublicKey)] = conf.Peers[i] } for _, n := range nodes { if peer, ok := keys[string(n.Key)]; ok && n.PersistentKeepalive > 0 { n.Endpoint = peer.Endpoint } } for _, p := range peers { if peer, ok := keys[string(p.PublicKey)]; ok && p.PersistentKeepalive > 0 { p.Endpoint = peer.Endpoint } } }