package simple import ( "fmt" "go/ast" "go/constant" "go/token" "go/types" "path/filepath" "reflect" "sort" "strings" "honnef.co/go/tools/analysis/code" "honnef.co/go/tools/analysis/edit" "honnef.co/go/tools/analysis/lint" "honnef.co/go/tools/analysis/report" "honnef.co/go/tools/go/ast/astutil" "honnef.co/go/tools/go/types/typeutil" "honnef.co/go/tools/internal/passes/buildir" "honnef.co/go/tools/internal/sharedcheck" "honnef.co/go/tools/knowledge" "honnef.co/go/tools/pattern" "golang.org/x/exp/typeparams" "golang.org/x/tools/go/analysis" ) var ( checkSingleCaseSelectQ1 = pattern.MustParse(` (ForStmt nil nil nil select@(SelectStmt (CommClause (Or (UnaryExpr "<-" _) (AssignStmt _ _ (UnaryExpr "<-" _))) _)))`) checkSingleCaseSelectQ2 = pattern.MustParse(`(SelectStmt (CommClause _ _))`) ) func CheckSingleCaseSelect(pass *analysis.Pass) (interface{}, error) { seen := map[ast.Node]struct{}{} fn := func(node ast.Node) { if m, ok := code.Match(pass, checkSingleCaseSelectQ1, node); ok { seen[m.State["select"].(ast.Node)] = struct{}{} report.Report(pass, node, "should use for range instead of for { select {} }", report.FilterGenerated()) } else if _, ok := code.Match(pass, checkSingleCaseSelectQ2, node); ok { if _, ok := seen[node]; !ok { report.Report(pass, node, "should use a simple channel send/receive instead of select with a single case", report.ShortRange(), report.FilterGenerated()) } } } code.Preorder(pass, fn, (*ast.ForStmt)(nil), (*ast.SelectStmt)(nil)) return nil, nil } var ( checkLoopCopyQ = pattern.MustParse(` (Or (RangeStmt key@(Ident _) value@(Ident _) ":=" src [(AssignStmt (IndexExpr dst key) "=" value)]) (RangeStmt key@(Ident _) nil ":=" src [(AssignStmt (IndexExpr dst key) "=" (IndexExpr src key))]) (ForStmt (AssignStmt key@(Ident _) ":=" (IntegerLiteral "0")) (BinaryExpr key "<" (CallExpr (Function "len") [src])) (IncDecStmt key "++") [(AssignStmt (IndexExpr dst key) "=" (IndexExpr src key))]))`) ) func CheckLoopCopy(pass *analysis.Pass) (interface{}, error) { // TODO revisit once range doesn't require a structural type isInvariant := func(k, v types.Object, node ast.Expr) bool { if code.MayHaveSideEffects(pass, node, nil) { return false } invariant := true ast.Inspect(node, func(node ast.Node) bool { if node, ok := node.(*ast.Ident); ok { obj := pass.TypesInfo.ObjectOf(node) if obj == k || obj == v { // don't allow loop bodies like 'a[i][i] = v' invariant = false return false } } return true }) return invariant } var elType func(T types.Type) (el types.Type, isArray bool, isArrayPointer bool, ok bool) elType = func(T types.Type) (el types.Type, isArray bool, isArrayPointer bool, ok bool) { switch typ := T.Underlying().(type) { case *types.Slice: return typ.Elem(), false, false, true case *types.Array: return typ.Elem(), true, false, true case *types.Pointer: el, isArray, _, ok = elType(typ.Elem()) return el, isArray, true, ok default: return nil, false, false, false } } fn := func(node ast.Node) { m, ok := code.Match(pass, checkLoopCopyQ, node) if !ok { return } src := m.State["src"].(ast.Expr) dst := m.State["dst"].(ast.Expr) k := pass.TypesInfo.ObjectOf(m.State["key"].(*ast.Ident)) var v types.Object if value, ok := m.State["value"]; ok { v = pass.TypesInfo.ObjectOf(value.(*ast.Ident)) } if !isInvariant(k, v, dst) { return } if !isInvariant(k, v, src) { // For example: 'for i := range foo()' return } Tsrc := pass.TypesInfo.TypeOf(src) Tdst := pass.TypesInfo.TypeOf(dst) TsrcElem, TsrcArray, TsrcPointer, ok := elType(Tsrc) if !ok { return } if TsrcPointer { Tsrc = Tsrc.Underlying().(*types.Pointer).Elem() } TdstElem, TdstArray, TdstPointer, ok := elType(Tdst) if !ok { return } if TdstPointer { Tdst = Tdst.Underlying().(*types.Pointer).Elem() } if !types.Identical(TsrcElem, TdstElem) { return } if TsrcArray && TdstArray && types.Identical(Tsrc, Tdst) { if TsrcPointer { src = &ast.StarExpr{ X: src, } } if TdstPointer { dst = &ast.StarExpr{ X: dst, } } r := &ast.AssignStmt{ Lhs: []ast.Expr{dst}, Rhs: []ast.Expr{src}, Tok: token.ASSIGN, } report.Report(pass, node, "should copy arrays using assignment instead of using a loop", report.FilterGenerated(), report.ShortRange(), report.Fixes(edit.Fix("replace loop with assignment", edit.ReplaceWithNode(pass.Fset, node, r)))) } else { opts := []report.Option{ report.ShortRange(), report.FilterGenerated(), } tv, err := types.Eval(pass.Fset, pass.Pkg, node.Pos(), "copy") if err == nil && tv.IsBuiltin() { src := m.State["src"].(ast.Expr) if TsrcArray { src = &ast.SliceExpr{ X: src, } } dst := m.State["dst"].(ast.Expr) if TdstArray { dst = &ast.SliceExpr{ X: dst, } } r := &ast.CallExpr{ Fun: &ast.Ident{Name: "copy"}, Args: []ast.Expr{dst, src}, } opts = append(opts, report.Fixes(edit.Fix("replace loop with call to copy()", edit.ReplaceWithNode(pass.Fset, node, r)))) } report.Report(pass, node, "should use copy() instead of a loop", opts...) } } code.Preorder(pass, fn, (*ast.ForStmt)(nil), (*ast.RangeStmt)(nil)) return nil, nil } func CheckIfBoolCmp(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if code.IsInTest(pass, node) { return } expr := node.(*ast.BinaryExpr) if expr.Op != token.EQL && expr.Op != token.NEQ { return } x := code.IsBoolConst(pass, expr.X) y := code.IsBoolConst(pass, expr.Y) if !x && !y { return } var other ast.Expr var val bool if x { val = code.BoolConst(pass, expr.X) other = expr.Y } else { val = code.BoolConst(pass, expr.Y) other = expr.X } ok := typeutil.All(pass.TypesInfo.TypeOf(other), func(term *typeparams.Term) bool { basic, ok := term.Type().Underlying().(*types.Basic) return ok && basic.Kind() == types.Bool }) if !ok { return } op := "" if (expr.Op == token.EQL && !val) || (expr.Op == token.NEQ && val) { op = "!" } r := op + report.Render(pass, other) l1 := len(r) r = strings.TrimLeft(r, "!") if (l1-len(r))%2 == 1 { r = "!" + r } report.Report(pass, expr, fmt.Sprintf("should omit comparison to bool constant, can be simplified to %s", r), report.FilterGenerated(), report.Fixes(edit.Fix("simplify bool comparison", edit.ReplaceWithString(expr, r)))) } code.Preorder(pass, fn, (*ast.BinaryExpr)(nil)) return nil, nil } var ( checkBytesBufferConversionsQ = pattern.MustParse(`(CallExpr _ [(CallExpr sel@(SelectorExpr recv _) [])])`) checkBytesBufferConversionsRs = pattern.MustParse(`(CallExpr (SelectorExpr recv (Ident "String")) [])`) checkBytesBufferConversionsRb = pattern.MustParse(`(CallExpr (SelectorExpr recv (Ident "Bytes")) [])`) ) func CheckBytesBufferConversions(pass *analysis.Pass) (interface{}, error) { if pass.Pkg.Path() == "bytes" || pass.Pkg.Path() == "bytes_test" { // The bytes package can use itself however it wants return nil, nil } fn := func(node ast.Node, stack []ast.Node) { m, ok := code.Match(pass, checkBytesBufferConversionsQ, node) if !ok { return } call := node.(*ast.CallExpr) sel := m.State["sel"].(*ast.SelectorExpr) typ := pass.TypesInfo.TypeOf(call.Fun) if typ == types.Universe.Lookup("string").Type() && code.IsCallTo(pass, call.Args[0], "(*bytes.Buffer).Bytes") { if _, ok := stack[len(stack)-2].(*ast.IndexExpr); ok { // Don't flag m[string(buf.Bytes())] – thanks to a // compiler optimization, this is actually faster than // m[buf.String()] return } report.Report(pass, call, fmt.Sprintf("should use %v.String() instead of %v", report.Render(pass, sel.X), report.Render(pass, call)), report.FilterGenerated(), report.Fixes(edit.Fix("simplify conversion", edit.ReplaceWithPattern(pass.Fset, node, checkBytesBufferConversionsRs, m.State)))) } else if typ, ok := typ.(*types.Slice); ok && typ.Elem() == types.Universe.Lookup("byte").Type() && code.IsCallTo(pass, call.Args[0], "(*bytes.Buffer).String") { report.Report(pass, call, fmt.Sprintf("should use %v.Bytes() instead of %v", report.Render(pass, sel.X), report.Render(pass, call)), report.FilterGenerated(), report.Fixes(edit.Fix("simplify conversion", edit.ReplaceWithPattern(pass.Fset, node, checkBytesBufferConversionsRb, m.State)))) } } code.PreorderStack(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } func CheckStringsContains(pass *analysis.Pass) (interface{}, error) { // map of value to token to bool value allowed := map[int64]map[token.Token]bool{ -1: {token.GTR: true, token.NEQ: true, token.EQL: false}, 0: {token.GEQ: true, token.LSS: false}, } fn := func(node ast.Node) { expr := node.(*ast.BinaryExpr) switch expr.Op { case token.GEQ, token.GTR, token.NEQ, token.LSS, token.EQL: default: return } value, ok := code.ExprToInt(pass, expr.Y) if !ok { return } allowedOps, ok := allowed[value] if !ok { return } b, ok := allowedOps[expr.Op] if !ok { return } call, ok := expr.X.(*ast.CallExpr) if !ok { return } sel, ok := call.Fun.(*ast.SelectorExpr) if !ok { return } pkgIdent, ok := sel.X.(*ast.Ident) if !ok { return } funIdent := sel.Sel if pkgIdent.Name != "strings" && pkgIdent.Name != "bytes" { return } var r ast.Expr switch funIdent.Name { case "IndexRune": r = &ast.SelectorExpr{ X: pkgIdent, Sel: &ast.Ident{Name: "ContainsRune"}, } case "IndexAny": r = &ast.SelectorExpr{ X: pkgIdent, Sel: &ast.Ident{Name: "ContainsAny"}, } case "Index": r = &ast.SelectorExpr{ X: pkgIdent, Sel: &ast.Ident{Name: "Contains"}, } default: return } r = &ast.CallExpr{ Fun: r, Args: call.Args, } if !b { r = &ast.UnaryExpr{ Op: token.NOT, X: r, } } report.Report(pass, node, fmt.Sprintf("should use %s instead", report.Render(pass, r)), report.FilterGenerated(), report.Fixes(edit.Fix(fmt.Sprintf("simplify use of %s", report.Render(pass, call.Fun)), edit.ReplaceWithNode(pass.Fset, node, r)))) } code.Preorder(pass, fn, (*ast.BinaryExpr)(nil)) return nil, nil } var ( checkBytesCompareQ = pattern.MustParse(`(BinaryExpr (CallExpr (Function "bytes.Compare") args) op@(Or "==" "!=") (IntegerLiteral "0"))`) checkBytesCompareRe = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "bytes") (Ident "Equal")) args)`) checkBytesCompareRn = pattern.MustParse(`(UnaryExpr "!" (CallExpr (SelectorExpr (Ident "bytes") (Ident "Equal")) args))`) ) func CheckBytesCompare(pass *analysis.Pass) (interface{}, error) { if pass.Pkg.Path() == "bytes" || pass.Pkg.Path() == "bytes_test" { // the bytes package is free to use bytes.Compare as it sees fit return nil, nil } fn := func(node ast.Node) { m, ok := code.Match(pass, checkBytesCompareQ, node) if !ok { return } args := report.RenderArgs(pass, m.State["args"].([]ast.Expr)) prefix := "" if m.State["op"].(token.Token) == token.NEQ { prefix = "!" } var fix analysis.SuggestedFix switch tok := m.State["op"].(token.Token); tok { case token.EQL: fix = edit.Fix("simplify use of bytes.Compare", edit.ReplaceWithPattern(pass.Fset, node, checkBytesCompareRe, m.State)) case token.NEQ: fix = edit.Fix("simplify use of bytes.Compare", edit.ReplaceWithPattern(pass.Fset, node, checkBytesCompareRn, m.State)) default: panic(fmt.Sprintf("unexpected token %v", tok)) } report.Report(pass, node, fmt.Sprintf("should use %sbytes.Equal(%s) instead", prefix, args), report.FilterGenerated(), report.Fixes(fix)) } code.Preorder(pass, fn, (*ast.BinaryExpr)(nil)) return nil, nil } func CheckForTrue(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { loop := node.(*ast.ForStmt) if loop.Init != nil || loop.Post != nil { return } if !code.IsBoolConst(pass, loop.Cond) || !code.BoolConst(pass, loop.Cond) { return } report.Report(pass, loop, "should use for {} instead of for true {}", report.ShortRange(), report.FilterGenerated()) } code.Preorder(pass, fn, (*ast.ForStmt)(nil)) return nil, nil } func CheckRegexpRaw(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) if !code.IsCallToAny(pass, call, "regexp.MustCompile", "regexp.Compile") { return } sel, ok := call.Fun.(*ast.SelectorExpr) if !ok { return } lit, ok := call.Args[knowledge.Arg("regexp.Compile.expr")].(*ast.BasicLit) if !ok { // TODO(dominikh): support string concat, maybe support constants return } if lit.Kind != token.STRING { // invalid function call return } if lit.Value[0] != '"' { // already a raw string return } val := lit.Value if !strings.Contains(val, `\\`) { return } if strings.Contains(val, "`") { return } bs := false for _, c := range val { if !bs && c == '\\' { bs = true continue } if bs && c == '\\' { bs = false continue } if bs { // backslash followed by non-backslash -> escape sequence return } } report.Report(pass, call, fmt.Sprintf("should use raw string (`...`) with regexp.%s to avoid having to escape twice", sel.Sel.Name), report.FilterGenerated()) } code.Preorder(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } var ( checkIfReturnQIf = pattern.MustParse(`(IfStmt nil cond [(ReturnStmt [ret@(Builtin (Or "true" "false"))])] nil)`) checkIfReturnQRet = pattern.MustParse(`(ReturnStmt [ret@(Builtin (Or "true" "false"))])`) ) func CheckIfReturn(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { block := node.(*ast.BlockStmt) l := len(block.List) if l < 2 { return } n1, n2 := block.List[l-2], block.List[l-1] if len(block.List) >= 3 { if _, ok := block.List[l-3].(*ast.IfStmt); ok { // Do not flag a series of if statements return } } m1, ok := code.Match(pass, checkIfReturnQIf, n1) if !ok { return } m2, ok := code.Match(pass, checkIfReturnQRet, n2) if !ok { return } if op, ok := m1.State["cond"].(*ast.BinaryExpr); ok { switch op.Op { case token.EQL, token.LSS, token.GTR, token.NEQ, token.LEQ, token.GEQ: default: return } } ret1 := m1.State["ret"].(*ast.Ident) ret2 := m2.State["ret"].(*ast.Ident) if ret1.Name == ret2.Name { // we want the function to return true and false, not the // same value both times. return } cond := m1.State["cond"].(ast.Expr) origCond := cond if ret1.Name == "false" { cond = negate(cond) } report.Report(pass, n1, fmt.Sprintf("should use 'return %s' instead of 'if %s { return %s }; return %s'", report.Render(pass, cond), report.Render(pass, origCond), report.Render(pass, ret1), report.Render(pass, ret2)), report.FilterGenerated()) } code.Preorder(pass, fn, (*ast.BlockStmt)(nil)) return nil, nil } func negate(expr ast.Expr) ast.Expr { switch expr := expr.(type) { case *ast.BinaryExpr: out := *expr switch expr.Op { case token.EQL: out.Op = token.NEQ case token.LSS: out.Op = token.GEQ case token.GTR: out.Op = token.LEQ case token.NEQ: out.Op = token.EQL case token.LEQ: out.Op = token.GTR case token.GEQ: out.Op = token.LSS } return &out case *ast.Ident, *ast.CallExpr, *ast.IndexExpr, *ast.StarExpr: return &ast.UnaryExpr{ Op: token.NOT, X: expr, } case *ast.UnaryExpr: if expr.Op == token.NOT { return expr.X } return &ast.UnaryExpr{ Op: token.NOT, X: expr, } default: return &ast.UnaryExpr{ Op: token.NOT, X: &ast.ParenExpr{ X: expr, }, } } } // CheckRedundantNilCheckWithLen checks for the following redundant nil-checks: // // if x == nil || len(x) == 0 {} // if x != nil && len(x) != 0 {} // if x != nil && len(x) == N {} (where N != 0) // if x != nil && len(x) > N {} // if x != nil && len(x) >= N {} (where N != 0) // func CheckRedundantNilCheckWithLen(pass *analysis.Pass) (interface{}, error) { isConstZero := func(expr ast.Expr) (isConst bool, isZero bool) { _, ok := expr.(*ast.BasicLit) if ok { return true, code.IsIntegerLiteral(pass, expr, constant.MakeInt64(0)) } id, ok := expr.(*ast.Ident) if !ok { return false, false } c, ok := pass.TypesInfo.ObjectOf(id).(*types.Const) if !ok { return false, false } return true, c.Val().Kind() == constant.Int && c.Val().String() == "0" } fn := func(node ast.Node) { // check that expr is "x || y" or "x && y" expr := node.(*ast.BinaryExpr) if expr.Op != token.LOR && expr.Op != token.LAND { return } eqNil := expr.Op == token.LOR // check that x is "xx == nil" or "xx != nil" x, ok := expr.X.(*ast.BinaryExpr) if !ok { return } if eqNil && x.Op != token.EQL { return } if !eqNil && x.Op != token.NEQ { return } xx, ok := x.X.(*ast.Ident) if !ok { return } if !code.IsNil(pass, x.Y) { return } // check that y is "len(xx) == 0" or "len(xx) ... " y, ok := expr.Y.(*ast.BinaryExpr) if !ok { return } if eqNil && y.Op != token.EQL { // must be len(xx) *==* 0 return } yx, ok := y.X.(*ast.CallExpr) if !ok { return } yxFun, ok := yx.Fun.(*ast.Ident) if !ok || yxFun.Name != "len" || len(yx.Args) != 1 { return } yxArg, ok := yx.Args[knowledge.Arg("len.v")].(*ast.Ident) if !ok { return } if yxArg.Name != xx.Name { return } if eqNil && !code.IsIntegerLiteral(pass, y.Y, constant.MakeInt64(0)) { // must be len(x) == *0* return } if !eqNil { isConst, isZero := isConstZero(y.Y) if !isConst { return } switch y.Op { case token.EQL: // avoid false positive for "xx != nil && len(xx) == 0" if isZero { return } case token.GEQ: // avoid false positive for "xx != nil && len(xx) >= 0" if isZero { return } case token.NEQ: // avoid false positive for "xx != nil && len(xx) != " if !isZero { return } case token.GTR: // ok default: return } } // finally check that xx type is one of array, slice, map or chan // this is to prevent false positive in case if xx is a pointer to an array typ := pass.TypesInfo.TypeOf(xx) ok = typeutil.All(typ, func(term *typeparams.Term) bool { switch term.Type().Underlying().(type) { case *types.Slice: return true case *types.Map: return true case *types.Chan: return true case *types.Pointer: return false case *typeparams.TypeParam: return false default: lint.ExhaustiveTypeSwitch(term.Type().Underlying()) return false } }) if !ok { return } report.Report(pass, expr, fmt.Sprintf("should omit nil check; len() for %s is defined as zero", typ), report.FilterGenerated()) } code.Preorder(pass, fn, (*ast.BinaryExpr)(nil)) return nil, nil } var checkSlicingQ = pattern.MustParse(`(SliceExpr x@(Object _) low (CallExpr (Builtin "len") [x]) nil)`) func CheckSlicing(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if _, ok := code.Match(pass, checkSlicingQ, node); ok { expr := node.(*ast.SliceExpr) report.Report(pass, expr.High, "should omit second index in slice, s[a:len(s)] is identical to s[a:]", report.FilterGenerated(), report.Fixes(edit.Fix("simplify slice expression", edit.Delete(expr.High)))) } } code.Preorder(pass, fn, (*ast.SliceExpr)(nil)) return nil, nil } func refersTo(pass *analysis.Pass, expr ast.Expr, ident types.Object) bool { found := false fn := func(node ast.Node) bool { ident2, ok := node.(*ast.Ident) if !ok { return true } if ident == pass.TypesInfo.ObjectOf(ident2) { found = true return false } return true } ast.Inspect(expr, fn) return found } var checkLoopAppendQ = pattern.MustParse(` (RangeStmt (Ident "_") val@(Object _) _ x [(AssignStmt [lhs] "=" [(CallExpr (Builtin "append") [lhs val])])]) `) func CheckLoopAppend(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { m, ok := code.Match(pass, checkLoopAppendQ, node) if !ok { return } val := m.State["val"].(types.Object) if refersTo(pass, m.State["lhs"].(ast.Expr), val) { return } src := pass.TypesInfo.TypeOf(m.State["x"].(ast.Expr)) dst := pass.TypesInfo.TypeOf(m.State["lhs"].(ast.Expr)) if !types.Identical(src, dst) { return } r := &ast.AssignStmt{ Lhs: []ast.Expr{m.State["lhs"].(ast.Expr)}, Tok: token.ASSIGN, Rhs: []ast.Expr{ &ast.CallExpr{ Fun: &ast.Ident{Name: "append"}, Args: []ast.Expr{ m.State["lhs"].(ast.Expr), m.State["x"].(ast.Expr), }, Ellipsis: 1, }, }, } report.Report(pass, node, fmt.Sprintf("should replace loop with %s", report.Render(pass, r)), report.ShortRange(), report.FilterGenerated(), report.Fixes(edit.Fix("replace loop with call to append", edit.ReplaceWithNode(pass.Fset, node, r)))) } code.Preorder(pass, fn, (*ast.RangeStmt)(nil)) return nil, nil } var ( checkTimeSinceQ = pattern.MustParse(`(CallExpr (SelectorExpr (CallExpr (Function "time.Now") []) (Function "(time.Time).Sub")) [arg])`) checkTimeSinceR = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "time") (Ident "Since")) [arg])`) ) func CheckTimeSince(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if _, edits, ok := code.MatchAndEdit(pass, checkTimeSinceQ, checkTimeSinceR, node); ok { report.Report(pass, node, "should use time.Since instead of time.Now().Sub", report.FilterGenerated(), report.Fixes(edit.Fix("replace with call to time.Since", edits...))) } } code.Preorder(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } var ( checkTimeUntilQ = pattern.MustParse(`(CallExpr (Function "(time.Time).Sub") [(CallExpr (Function "time.Now") [])])`) checkTimeUntilR = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "time") (Ident "Until")) [arg])`) ) func CheckTimeUntil(pass *analysis.Pass) (interface{}, error) { if !code.IsGoVersion(pass, 8) { return nil, nil } fn := func(node ast.Node) { if _, ok := code.Match(pass, checkTimeUntilQ, node); ok { if sel, ok := node.(*ast.CallExpr).Fun.(*ast.SelectorExpr); ok { r := pattern.NodeToAST(checkTimeUntilR.Root, map[string]interface{}{"arg": sel.X}).(ast.Node) report.Report(pass, node, "should use time.Until instead of t.Sub(time.Now())", report.FilterGenerated(), report.Fixes(edit.Fix("replace with call to time.Until", edit.ReplaceWithNode(pass.Fset, node, r)))) } else { report.Report(pass, node, "should use time.Until instead of t.Sub(time.Now())", report.FilterGenerated()) } } } code.Preorder(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } var ( checkUnnecessaryBlankQ1 = pattern.MustParse(` (AssignStmt [_ (Ident "_")] _ (Or (IndexExpr _ _) (UnaryExpr "<-" _))) `) checkUnnecessaryBlankQ2 = pattern.MustParse(` (AssignStmt (Ident "_") _ recv@(UnaryExpr "<-" _))`) ) func CheckUnnecessaryBlank(pass *analysis.Pass) (interface{}, error) { fn1 := func(node ast.Node) { if _, ok := code.Match(pass, checkUnnecessaryBlankQ1, node); ok { r := *node.(*ast.AssignStmt) r.Lhs = r.Lhs[0:1] report.Report(pass, node, "unnecessary assignment to the blank identifier", report.FilterGenerated(), report.Fixes(edit.Fix("remove assignment to blank identifier", edit.ReplaceWithNode(pass.Fset, node, &r)))) } else if m, ok := code.Match(pass, checkUnnecessaryBlankQ2, node); ok { report.Report(pass, node, "unnecessary assignment to the blank identifier", report.FilterGenerated(), report.Fixes(edit.Fix("simplify channel receive operation", edit.ReplaceWithNode(pass.Fset, node, m.State["recv"].(ast.Node))))) } } fn3 := func(node ast.Node) { rs := node.(*ast.RangeStmt) // for _ if rs.Value == nil && astutil.IsBlank(rs.Key) { report.Report(pass, rs.Key, "unnecessary assignment to the blank identifier", report.FilterGenerated(), report.Fixes(edit.Fix("remove assignment to blank identifier", edit.Delete(edit.Range{rs.Key.Pos(), rs.TokPos + 1})))) } // for _, _ if astutil.IsBlank(rs.Key) && astutil.IsBlank(rs.Value) { // FIXME we should mark both key and value report.Report(pass, rs.Key, "unnecessary assignment to the blank identifier", report.FilterGenerated(), report.Fixes(edit.Fix("remove assignment to blank identifier", edit.Delete(edit.Range{rs.Key.Pos(), rs.TokPos + 1})))) } // for x, _ if !astutil.IsBlank(rs.Key) && astutil.IsBlank(rs.Value) { report.Report(pass, rs.Value, "unnecessary assignment to the blank identifier", report.FilterGenerated(), report.Fixes(edit.Fix("remove assignment to blank identifier", edit.Delete(edit.Range{rs.Key.End(), rs.Value.End()})))) } } code.Preorder(pass, fn1, (*ast.AssignStmt)(nil)) if code.IsGoVersion(pass, 4) { code.Preorder(pass, fn3, (*ast.RangeStmt)(nil)) } return nil, nil } func CheckSimplerStructConversion(pass *analysis.Pass) (interface{}, error) { // TODO(dh): support conversions between type parameters fn := func(node ast.Node, stack []ast.Node) { if unary, ok := stack[len(stack)-2].(*ast.UnaryExpr); ok && unary.Op == token.AND { // Do not suggest type conversion between pointers return } lit := node.(*ast.CompositeLit) typ1, _ := pass.TypesInfo.TypeOf(lit.Type).(*types.Named) if typ1 == nil { return } s1, ok := typ1.Underlying().(*types.Struct) if !ok { return } var typ2 *types.Named var ident *ast.Ident getSelType := func(expr ast.Expr) (types.Type, *ast.Ident, bool) { sel, ok := expr.(*ast.SelectorExpr) if !ok { return nil, nil, false } ident, ok := sel.X.(*ast.Ident) if !ok { return nil, nil, false } typ := pass.TypesInfo.TypeOf(sel.X) return typ, ident, typ != nil } if len(lit.Elts) == 0 { return } if s1.NumFields() != len(lit.Elts) { return } for i, elt := range lit.Elts { var t types.Type var id *ast.Ident var ok bool switch elt := elt.(type) { case *ast.SelectorExpr: t, id, ok = getSelType(elt) if !ok { return } if i >= s1.NumFields() || s1.Field(i).Name() != elt.Sel.Name { return } case *ast.KeyValueExpr: var sel *ast.SelectorExpr sel, ok = elt.Value.(*ast.SelectorExpr) if !ok { return } if elt.Key.(*ast.Ident).Name != sel.Sel.Name { return } t, id, ok = getSelType(elt.Value) } if !ok { return } // All fields must be initialized from the same object if ident != nil && ident.Obj != id.Obj { return } typ2, _ = t.(*types.Named) if typ2 == nil { return } ident = id } if typ2 == nil { return } if typ1.Obj().Pkg() != typ2.Obj().Pkg() { // Do not suggest type conversions between different // packages. Types in different packages might only match // by coincidence. Furthermore, if the dependency ever // adds more fields to its type, it could break the code // that relies on the type conversion to work. return } s2, ok := typ2.Underlying().(*types.Struct) if !ok { return } if typ1 == typ2 { return } if code.IsGoVersion(pass, 8) { if !types.IdenticalIgnoreTags(s1, s2) { return } } else { if !types.Identical(s1, s2) { return } } r := &ast.CallExpr{ Fun: lit.Type, Args: []ast.Expr{ident}, } report.Report(pass, node, fmt.Sprintf("should convert %s (type %s) to %s instead of using struct literal", ident.Name, types.TypeString(typ2, types.RelativeTo(pass.Pkg)), types.TypeString(typ1, types.RelativeTo(pass.Pkg))), report.FilterGenerated(), report.Fixes(edit.Fix("use type conversion", edit.ReplaceWithNode(pass.Fset, node, r)))) } code.PreorderStack(pass, fn, (*ast.CompositeLit)(nil)) return nil, nil } func CheckTrim(pass *analysis.Pass) (interface{}, error) { sameNonDynamic := func(node1, node2 ast.Node) bool { if reflect.TypeOf(node1) != reflect.TypeOf(node2) { return false } switch node1 := node1.(type) { case *ast.Ident: return node1.Obj == node2.(*ast.Ident).Obj case *ast.SelectorExpr, *ast.IndexExpr: return astutil.Equal(node1, node2) case *ast.BasicLit: return astutil.Equal(node1, node2) } return false } isLenOnIdent := func(fn ast.Expr, ident ast.Expr) bool { call, ok := fn.(*ast.CallExpr) if !ok { return false } if !code.IsCallTo(pass, call, "len") { return false } if len(call.Args) != 1 { return false } return sameNonDynamic(call.Args[knowledge.Arg("len.v")], ident) } fn := func(node ast.Node) { var pkg string var fun string ifstmt := node.(*ast.IfStmt) if ifstmt.Init != nil { return } if ifstmt.Else != nil { return } if len(ifstmt.Body.List) != 1 { return } condCall, ok := ifstmt.Cond.(*ast.CallExpr) if !ok { return } condCallName := code.CallName(pass, condCall) switch condCallName { case "strings.HasPrefix": pkg = "strings" fun = "HasPrefix" case "strings.HasSuffix": pkg = "strings" fun = "HasSuffix" case "strings.Contains": pkg = "strings" fun = "Contains" case "bytes.HasPrefix": pkg = "bytes" fun = "HasPrefix" case "bytes.HasSuffix": pkg = "bytes" fun = "HasSuffix" case "bytes.Contains": pkg = "bytes" fun = "Contains" default: return } assign, ok := ifstmt.Body.List[0].(*ast.AssignStmt) if !ok { return } if assign.Tok != token.ASSIGN { return } if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 { return } if !sameNonDynamic(condCall.Args[0], assign.Lhs[0]) { return } switch rhs := assign.Rhs[0].(type) { case *ast.CallExpr: if len(rhs.Args) < 2 || !sameNonDynamic(condCall.Args[0], rhs.Args[0]) || !sameNonDynamic(condCall.Args[1], rhs.Args[1]) { return } rhsName := code.CallName(pass, rhs) if condCallName == "strings.HasPrefix" && rhsName == "strings.TrimPrefix" || condCallName == "strings.HasSuffix" && rhsName == "strings.TrimSuffix" || condCallName == "strings.Contains" && rhsName == "strings.Replace" || condCallName == "bytes.HasPrefix" && rhsName == "bytes.TrimPrefix" || condCallName == "bytes.HasSuffix" && rhsName == "bytes.TrimSuffix" || condCallName == "bytes.Contains" && rhsName == "bytes.Replace" { report.Report(pass, ifstmt, fmt.Sprintf("should replace this if statement with an unconditional %s", rhsName), report.FilterGenerated()) } case *ast.SliceExpr: slice := rhs if !ok { return } if slice.Slice3 { return } if !sameNonDynamic(slice.X, condCall.Args[0]) { return } validateOffset := func(off ast.Expr) bool { switch off := off.(type) { case *ast.CallExpr: return isLenOnIdent(off, condCall.Args[1]) case *ast.BasicLit: if pkg != "strings" { return false } if _, ok := condCall.Args[1].(*ast.BasicLit); !ok { // Only allow manual slicing with an integer // literal if the second argument to HasPrefix // was a string literal. return false } s, ok1 := code.ExprToString(pass, condCall.Args[1]) n, ok2 := code.ExprToInt(pass, off) if !ok1 || !ok2 || n != int64(len(s)) { return false } return true default: return false } } switch fun { case "HasPrefix": // TODO(dh) We could detect a High that is len(s), but another // rule will already flag that, anyway. if slice.High != nil { return } if !validateOffset(slice.Low) { return } case "HasSuffix": if slice.Low != nil { n, ok := code.ExprToInt(pass, slice.Low) if !ok || n != 0 { return } } switch index := slice.High.(type) { case *ast.BinaryExpr: if index.Op != token.SUB { return } if !isLenOnIdent(index.X, condCall.Args[0]) { return } if !validateOffset(index.Y) { return } default: return } default: return } var replacement string switch fun { case "HasPrefix": replacement = "TrimPrefix" case "HasSuffix": replacement = "TrimSuffix" } report.Report(pass, ifstmt, fmt.Sprintf("should replace this if statement with an unconditional %s.%s", pkg, replacement), report.ShortRange(), report.FilterGenerated()) } } code.Preorder(pass, fn, (*ast.IfStmt)(nil)) return nil, nil } var ( checkLoopSlideQ = pattern.MustParse(` (ForStmt (AssignStmt initvar@(Ident _) _ (IntegerLiteral "0")) (BinaryExpr initvar "<" limit@(Ident _)) (IncDecStmt initvar "++") [(AssignStmt (IndexExpr slice@(Ident _) initvar) "=" (IndexExpr slice (BinaryExpr offset@(Ident _) "+" initvar)))])`) checkLoopSlideR = pattern.MustParse(` (CallExpr (Ident "copy") [(SliceExpr slice nil limit nil) (SliceExpr slice offset nil nil)])`) ) func CheckLoopSlide(pass *analysis.Pass) (interface{}, error) { // TODO(dh): detect bs[i+offset] in addition to bs[offset+i] // TODO(dh): consider merging this function with LintLoopCopy // TODO(dh): detect length that is an expression, not a variable name // TODO(dh): support sliding to a different offset than the beginning of the slice fn := func(node ast.Node) { loop := node.(*ast.ForStmt) m, edits, ok := code.MatchAndEdit(pass, checkLoopSlideQ, checkLoopSlideR, loop) if !ok { return } typ := pass.TypesInfo.TypeOf(m.State["slice"].(*ast.Ident)) // The pattern probably needs a core type, but All is fine, too. Either way we only accept slices. if !typeutil.All(typ, typeutil.IsSlice) { return } report.Report(pass, loop, "should use copy() instead of loop for sliding slice elements", report.ShortRange(), report.FilterGenerated(), report.Fixes(edit.Fix("use copy() instead of loop", edits...))) } code.Preorder(pass, fn, (*ast.ForStmt)(nil)) return nil, nil } var ( checkMakeLenCapQ1 = pattern.MustParse(`(CallExpr (Builtin "make") [typ size@(IntegerLiteral "0")])`) checkMakeLenCapQ2 = pattern.MustParse(`(CallExpr (Builtin "make") [typ size size])`) ) func CheckMakeLenCap(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if pass.Pkg.Path() == "runtime_test" && filepath.Base(pass.Fset.Position(node.Pos()).Filename) == "map_test.go" { // special case of runtime tests testing map creation return } if m, ok := code.Match(pass, checkMakeLenCapQ1, node); ok { T := m.State["typ"].(ast.Expr) size := m.State["size"].(ast.Node) if _, ok := typeutil.CoreType(pass.TypesInfo.TypeOf(T)).Underlying().(*types.Chan); ok { report.Report(pass, size, fmt.Sprintf("should use make(%s) instead", report.Render(pass, T)), report.FilterGenerated()) } } else if m, ok := code.Match(pass, checkMakeLenCapQ2, node); ok { // TODO(dh): don't consider sizes identical if they're // dynamic. for example: make(T, <-ch, <-ch). T := m.State["typ"].(ast.Expr) size := m.State["size"].(ast.Node) report.Report(pass, size, fmt.Sprintf("should use make(%s, %s) instead", report.Render(pass, T), report.Render(pass, size)), report.FilterGenerated()) } } code.Preorder(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } var ( checkAssertNotNilFn1Q = pattern.MustParse(` (IfStmt (AssignStmt [(Ident "_") ok@(Object _)] _ [(TypeAssertExpr assert@(Object _) _)]) (Or (BinaryExpr ok "&&" (BinaryExpr assert "!=" (Builtin "nil"))) (BinaryExpr (BinaryExpr assert "!=" (Builtin "nil")) "&&" ok)) _ _)`) checkAssertNotNilFn2Q = pattern.MustParse(` (IfStmt nil (BinaryExpr lhs@(Object _) "!=" (Builtin "nil")) [ ifstmt@(IfStmt (AssignStmt [(Ident "_") ok@(Object _)] _ [(TypeAssertExpr lhs _)]) ok _ nil) ] nil)`) ) func CheckAssertNotNil(pass *analysis.Pass) (interface{}, error) { fn1 := func(node ast.Node) { m, ok := code.Match(pass, checkAssertNotNilFn1Q, node) if !ok { return } assert := m.State["assert"].(types.Object) assign := m.State["ok"].(types.Object) report.Report(pass, node, fmt.Sprintf("when %s is true, %s can't be nil", assign.Name(), assert.Name()), report.ShortRange(), report.FilterGenerated()) } fn2 := func(node ast.Node) { m, ok := code.Match(pass, checkAssertNotNilFn2Q, node) if !ok { return } ifstmt := m.State["ifstmt"].(*ast.IfStmt) lhs := m.State["lhs"].(types.Object) assignIdent := m.State["ok"].(types.Object) report.Report(pass, ifstmt, fmt.Sprintf("when %s is true, %s can't be nil", assignIdent.Name(), lhs.Name()), report.ShortRange(), report.FilterGenerated()) } // OPT(dh): merge fn1 and fn2 code.Preorder(pass, fn1, (*ast.IfStmt)(nil)) code.Preorder(pass, fn2, (*ast.IfStmt)(nil)) return nil, nil } func CheckDeclareAssign(pass *analysis.Pass) (interface{}, error) { hasMultipleAssignments := func(root ast.Node, ident *ast.Ident) bool { num := 0 ast.Inspect(root, func(node ast.Node) bool { if num >= 2 { return false } assign, ok := node.(*ast.AssignStmt) if !ok { return true } for _, lhs := range assign.Lhs { if oident, ok := lhs.(*ast.Ident); ok { if oident.Obj == ident.Obj { num++ } } } return true }) return num >= 2 } fn := func(node ast.Node) { block := node.(*ast.BlockStmt) if len(block.List) < 2 { return } for i, stmt := range block.List[:len(block.List)-1] { _ = i decl, ok := stmt.(*ast.DeclStmt) if !ok { continue } gdecl, ok := decl.Decl.(*ast.GenDecl) if !ok || gdecl.Tok != token.VAR || len(gdecl.Specs) != 1 { continue } vspec, ok := gdecl.Specs[0].(*ast.ValueSpec) if !ok || len(vspec.Names) != 1 || len(vspec.Values) != 0 { continue } assign, ok := block.List[i+1].(*ast.AssignStmt) if !ok || assign.Tok != token.ASSIGN { continue } if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 { continue } ident, ok := assign.Lhs[0].(*ast.Ident) if !ok { continue } if vspec.Names[0].Obj != ident.Obj { continue } if refersTo(pass, assign.Rhs[0], pass.TypesInfo.ObjectOf(ident)) { continue } if hasMultipleAssignments(block, ident) { continue } r := &ast.GenDecl{ Specs: []ast.Spec{ &ast.ValueSpec{ Names: vspec.Names, Values: []ast.Expr{assign.Rhs[0]}, Type: vspec.Type, }, }, Tok: gdecl.Tok, } report.Report(pass, decl, "should merge variable declaration with assignment on next line", report.FilterGenerated(), report.Fixes(edit.Fix("merge declaration with assignment", edit.ReplaceWithNode(pass.Fset, edit.Range{decl.Pos(), assign.End()}, r)))) } } code.Preorder(pass, fn, (*ast.BlockStmt)(nil)) return nil, nil } func CheckRedundantBreak(pass *analysis.Pass) (interface{}, error) { fn1 := func(node ast.Node) { clause := node.(*ast.CaseClause) if len(clause.Body) < 2 { return } branch, ok := clause.Body[len(clause.Body)-1].(*ast.BranchStmt) if !ok || branch.Tok != token.BREAK || branch.Label != nil { return } report.Report(pass, branch, "redundant break statement", report.FilterGenerated()) } fn2 := func(node ast.Node) { var ret *ast.FieldList var body *ast.BlockStmt switch x := node.(type) { case *ast.FuncDecl: ret = x.Type.Results body = x.Body case *ast.FuncLit: ret = x.Type.Results body = x.Body default: lint.ExhaustiveTypeSwitch(node) } // if the func has results, a return can't be redundant. // similarly, if there are no statements, there can be // no return. if ret != nil || body == nil || len(body.List) < 1 { return } rst, ok := body.List[len(body.List)-1].(*ast.ReturnStmt) if !ok { return } // we don't need to check rst.Results as we already // checked x.Type.Results to be nil. report.Report(pass, rst, "redundant return statement", report.FilterGenerated()) } code.Preorder(pass, fn1, (*ast.CaseClause)(nil)) code.Preorder(pass, fn2, (*ast.FuncDecl)(nil), (*ast.FuncLit)(nil)) return nil, nil } func isStringer(T types.Type, msCache *typeutil.MethodSetCache) bool { ms := msCache.MethodSet(T) sel := ms.Lookup(nil, "String") if sel == nil { return false } fn, ok := sel.Obj().(*types.Func) if !ok { // should be unreachable return false } sig := fn.Type().(*types.Signature) if sig.Params().Len() != 0 { return false } if sig.Results().Len() != 1 { return false } if !typeutil.IsType(sig.Results().At(0).Type(), "string") { return false } return true } func isFormatter(T types.Type, msCache *typeutil.MethodSetCache) bool { // TODO(dh): this function also exists in staticcheck/lint.go – deduplicate. ms := msCache.MethodSet(T) sel := ms.Lookup(nil, "Format") if sel == nil { return false } fn, ok := sel.Obj().(*types.Func) if !ok { // should be unreachable return false } sig := fn.Type().(*types.Signature) if sig.Params().Len() != 2 { return false } // TODO(dh): check the types of the arguments for more // precision if sig.Results().Len() != 0 { return false } return true } var checkRedundantSprintfQ = pattern.MustParse(`(CallExpr (Function "fmt.Sprintf") [format arg])`) func CheckRedundantSprintf(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { m, ok := code.Match(pass, checkRedundantSprintfQ, node) if !ok { return } format := m.State["format"].(ast.Expr) arg := m.State["arg"].(ast.Expr) // TODO(dh): should we really support named constants here? // shouldn't we only look for string literals? to avoid false // positives via build tags? if s, ok := code.ExprToString(pass, format); !ok || s != "%s" { return } typ := pass.TypesInfo.TypeOf(arg) if typeparams.IsTypeParam(typ) { return } irpkg := pass.ResultOf[buildir.Analyzer].(*buildir.IR).Pkg if types.TypeString(typ, nil) == "reflect.Value" { // printing with %s produces output different from using // the String method return } if isFormatter(typ, &irpkg.Prog.MethodSets) { // the type may choose to handle %s in arbitrary ways return } if isStringer(typ, &irpkg.Prog.MethodSets) { replacement := &ast.CallExpr{ Fun: &ast.SelectorExpr{ X: arg, Sel: &ast.Ident{Name: "String"}, }, } report.Report(pass, node, "should use String() instead of fmt.Sprintf", report.Fixes(edit.Fix("replace with call to String method", edit.ReplaceWithNode(pass.Fset, node, replacement)))) } else if typ == types.Universe.Lookup("string").Type() { report.Report(pass, node, "the argument is already a string, there's no need to use fmt.Sprintf", report.FilterGenerated(), report.Fixes(edit.Fix("remove unnecessary call to fmt.Sprintf", edit.ReplaceWithNode(pass.Fset, node, arg)))) } else if typ.Underlying() == types.Universe.Lookup("string").Type() { replacement := &ast.CallExpr{ Fun: &ast.Ident{Name: "string"}, Args: []ast.Expr{arg}, } report.Report(pass, node, "the argument's underlying type is a string, should use a simple conversion instead of fmt.Sprintf", report.FilterGenerated(), report.Fixes(edit.Fix("replace with conversion to string", edit.ReplaceWithNode(pass.Fset, node, replacement)))) } else if slice, ok := typ.Underlying().(*types.Slice); ok && slice.Elem() == types.Universe.Lookup("byte").Type() { // Note that we check slice.Elem(), not slice.Elem().Underlying, because of https://github.com/golang/go/issues/23536 replacement := &ast.CallExpr{ Fun: &ast.Ident{Name: "string"}, Args: []ast.Expr{arg}, } report.Report(pass, node, "the argument's underlying type is a slice of bytes, should use a simple conversion instead of fmt.Sprintf", report.FilterGenerated(), report.Fixes(edit.Fix("replace with conversion to string", edit.ReplaceWithNode(pass.Fset, node, replacement)))) } } code.Preorder(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } var ( checkErrorsNewSprintfQ = pattern.MustParse(`(CallExpr (Function "errors.New") [(CallExpr (Function "fmt.Sprintf") args)])`) checkErrorsNewSprintfR = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "fmt") (Ident "Errorf")) args)`) ) func CheckErrorsNewSprintf(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if _, edits, ok := code.MatchAndEdit(pass, checkErrorsNewSprintfQ, checkErrorsNewSprintfR, node); ok { // TODO(dh): the suggested fix may leave an unused import behind report.Report(pass, node, "should use fmt.Errorf(...) instead of errors.New(fmt.Sprintf(...))", report.FilterGenerated(), report.Fixes(edit.Fix("use fmt.Errorf", edits...))) } } code.Preorder(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } func CheckRangeStringRunes(pass *analysis.Pass) (interface{}, error) { return sharedcheck.CheckRangeStringRunes(pass) } var checkNilCheckAroundRangeQ = pattern.MustParse(` (IfStmt nil (BinaryExpr x@(Object _) "!=" (Builtin "nil")) [(RangeStmt _ _ _ x _)] nil)`) func CheckNilCheckAroundRange(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { m, ok := code.Match(pass, checkNilCheckAroundRangeQ, node) if !ok { return } ok = typeutil.All(m.State["x"].(types.Object).Type(), func(term *typeparams.Term) bool { switch term.Type().Underlying().(type) { case *types.Slice, *types.Map: return true case *typeparams.TypeParam, *types.Chan, *types.Pointer: return false default: lint.ExhaustiveTypeSwitch(term.Type().Underlying()) return false } }) if !ok { return } report.Report(pass, node, "unnecessary nil check around range", report.ShortRange(), report.FilterGenerated()) } code.Preorder(pass, fn, (*ast.IfStmt)(nil)) return nil, nil } func isPermissibleSort(pass *analysis.Pass, node ast.Node) bool { call := node.(*ast.CallExpr) typeconv, ok := call.Args[0].(*ast.CallExpr) if !ok { return true } sel, ok := typeconv.Fun.(*ast.SelectorExpr) if !ok { return true } name := code.SelectorName(pass, sel) switch name { case "sort.IntSlice", "sort.Float64Slice", "sort.StringSlice": default: return true } return false } func CheckSortHelpers(pass *analysis.Pass) (interface{}, error) { type Error struct { node ast.Node msg string } var allErrors []Error fn := func(node ast.Node) { var body *ast.BlockStmt switch node := node.(type) { case *ast.FuncLit: body = node.Body case *ast.FuncDecl: body = node.Body default: lint.ExhaustiveTypeSwitch(node) } if body == nil { return } var errors []Error permissible := false fnSorts := func(node ast.Node) bool { if permissible { return false } if !code.IsCallTo(pass, node, "sort.Sort") { return true } if isPermissibleSort(pass, node) { permissible = true return false } call := node.(*ast.CallExpr) // isPermissibleSort guarantees that this type assertion will succeed typeconv := call.Args[knowledge.Arg("sort.Sort.data")].(*ast.CallExpr) sel := typeconv.Fun.(*ast.SelectorExpr) name := code.SelectorName(pass, sel) switch name { case "sort.IntSlice": errors = append(errors, Error{node, "should use sort.Ints(...) instead of sort.Sort(sort.IntSlice(...))"}) case "sort.Float64Slice": errors = append(errors, Error{node, "should use sort.Float64s(...) instead of sort.Sort(sort.Float64Slice(...))"}) case "sort.StringSlice": errors = append(errors, Error{node, "should use sort.Strings(...) instead of sort.Sort(sort.StringSlice(...))"}) } return true } ast.Inspect(body, fnSorts) if permissible { return } allErrors = append(allErrors, errors...) } code.Preorder(pass, fn, (*ast.FuncLit)(nil), (*ast.FuncDecl)(nil)) sort.Slice(allErrors, func(i, j int) bool { return allErrors[i].node.Pos() < allErrors[j].node.Pos() }) var prev token.Pos for _, err := range allErrors { if err.node.Pos() == prev { continue } prev = err.node.Pos() report.Report(pass, err.node, err.msg, report.FilterGenerated()) } return nil, nil } var checkGuardedDeleteQ = pattern.MustParse(` (IfStmt (AssignStmt [(Ident "_") ok@(Ident _)] ":=" (IndexExpr m key)) ok [call@(CallExpr (Builtin "delete") [m key])] nil)`) func CheckGuardedDelete(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if m, ok := code.Match(pass, checkGuardedDeleteQ, node); ok { report.Report(pass, node, "unnecessary guard around call to delete", report.ShortRange(), report.FilterGenerated(), report.Fixes(edit.Fix("remove guard", edit.ReplaceWithNode(pass.Fset, node, m.State["call"].(ast.Node))))) } } code.Preorder(pass, fn, (*ast.IfStmt)(nil)) return nil, nil } var ( checkSimplifyTypeSwitchQ = pattern.MustParse(` (TypeSwitchStmt nil expr@(TypeAssertExpr ident@(Ident _) _) body)`) checkSimplifyTypeSwitchR = pattern.MustParse(`(AssignStmt ident ":=" expr)`) ) func CheckSimplifyTypeSwitch(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { m, ok := code.Match(pass, checkSimplifyTypeSwitchQ, node) if !ok { return } stmt := node.(*ast.TypeSwitchStmt) expr := m.State["expr"].(ast.Node) ident := m.State["ident"].(*ast.Ident) x := pass.TypesInfo.ObjectOf(ident) var allOffenders []*ast.TypeAssertExpr canSuggestFix := true for _, clause := range stmt.Body.List { clause := clause.(*ast.CaseClause) if len(clause.List) != 1 { continue } hasUnrelatedAssertion := false var offenders []*ast.TypeAssertExpr ast.Inspect(clause, func(node ast.Node) bool { assert2, ok := node.(*ast.TypeAssertExpr) if !ok { return true } ident, ok := assert2.X.(*ast.Ident) if !ok { hasUnrelatedAssertion = true return false } if pass.TypesInfo.ObjectOf(ident) != x { hasUnrelatedAssertion = true return false } if !types.Identical(pass.TypesInfo.TypeOf(clause.List[0]), pass.TypesInfo.TypeOf(assert2.Type)) { hasUnrelatedAssertion = true return false } offenders = append(offenders, assert2) return true }) if !hasUnrelatedAssertion { // don't flag cases that have other type assertions // unrelated to the one in the case clause. often // times, this is done for symmetry, when two // different values have to be asserted to the same // type. allOffenders = append(allOffenders, offenders...) } canSuggestFix = canSuggestFix && !hasUnrelatedAssertion } if len(allOffenders) != 0 { var opts []report.Option for _, offender := range allOffenders { opts = append(opts, report.Related(offender, "could eliminate this type assertion")) } opts = append(opts, report.FilterGenerated()) msg := fmt.Sprintf("assigning the result of this type assertion to a variable (switch %s := %s.(type)) could eliminate type assertions in switch cases", report.Render(pass, ident), report.Render(pass, ident)) if canSuggestFix { var edits []analysis.TextEdit edits = append(edits, edit.ReplaceWithPattern(pass.Fset, expr, checkSimplifyTypeSwitchR, m.State)) for _, offender := range allOffenders { edits = append(edits, edit.ReplaceWithNode(pass.Fset, offender, offender.X)) } opts = append(opts, report.Fixes(edit.Fix("simplify type switch", edits...))) report.Report(pass, expr, msg, opts...) } else { report.Report(pass, expr, msg, opts...) } } } code.Preorder(pass, fn, (*ast.TypeSwitchStmt)(nil)) return nil, nil } func CheckRedundantCanonicalHeaderKey(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) callName := code.CallName(pass, call) switch callName { case "(net/http.Header).Add", "(net/http.Header).Del", "(net/http.Header).Get", "(net/http.Header).Set": default: return } if !code.IsCallTo(pass, call.Args[0], "net/http.CanonicalHeaderKey") { return } report.Report(pass, call, fmt.Sprintf("calling net/http.CanonicalHeaderKey on the 'key' argument of %s is redundant", callName), report.FilterGenerated(), report.Fixes(edit.Fix("remove call to CanonicalHeaderKey", edit.ReplaceWithNode(pass.Fset, call.Args[0], call.Args[0].(*ast.CallExpr).Args[0])))) } code.Preorder(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } var checkUnnecessaryGuardQ = pattern.MustParse(` (Or (IfStmt (AssignStmt [(Ident "_") ok@(Ident _)] ":=" indexexpr@(IndexExpr _ _)) ok set@(AssignStmt indexexpr "=" (CallExpr (Builtin "append") indexexpr:values)) (AssignStmt indexexpr "=" (CompositeLit _ values))) (IfStmt (AssignStmt [(Ident "_") ok] ":=" indexexpr@(IndexExpr _ _)) ok set@(AssignStmt indexexpr "+=" value) (AssignStmt indexexpr "=" value)) (IfStmt (AssignStmt [(Ident "_") ok] ":=" indexexpr@(IndexExpr _ _)) ok set@(IncDecStmt indexexpr "++") (AssignStmt indexexpr "=" (IntegerLiteral "1"))))`) func CheckUnnecessaryGuard(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if m, ok := code.Match(pass, checkUnnecessaryGuardQ, node); ok { if code.MayHaveSideEffects(pass, m.State["indexexpr"].(ast.Expr), nil) { return } report.Report(pass, node, "unnecessary guard around map access", report.ShortRange(), report.Fixes(edit.Fix("simplify map access", edit.ReplaceWithNode(pass.Fset, node, m.State["set"].(ast.Node))))) } } code.Preorder(pass, fn, (*ast.IfStmt)(nil)) return nil, nil } var ( checkElaborateSleepQ = pattern.MustParse(`(SelectStmt (CommClause (UnaryExpr "<-" (CallExpr (Function "time.After") [arg])) body))`) checkElaborateSleepR = pattern.MustParse(`(CallExpr (SelectorExpr (Ident "time") (Ident "Sleep")) [arg])`) ) func CheckElaborateSleep(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if m, ok := code.Match(pass, checkElaborateSleepQ, node); ok { if body, ok := m.State["body"].([]ast.Stmt); ok && len(body) == 0 { report.Report(pass, node, "should use time.Sleep instead of elaborate way of sleeping", report.ShortRange(), report.FilterGenerated(), report.Fixes(edit.Fix("Use time.Sleep", edit.ReplaceWithPattern(pass.Fset, node, checkElaborateSleepR, m.State)))) } else { // TODO(dh): we could make a suggested fix if the body // doesn't declare or shadow any identifiers report.Report(pass, node, "should use time.Sleep instead of elaborate way of sleeping", report.ShortRange(), report.FilterGenerated()) } } } code.Preorder(pass, fn, (*ast.SelectStmt)(nil)) return nil, nil } var ( checkPrintSprintQ = pattern.MustParse(` (Or (CallExpr fn@(Or (Function "fmt.Print") (Function "fmt.Sprint") (Function "fmt.Println") (Function "fmt.Sprintln")) [(CallExpr (Function "fmt.Sprintf") f:_)]) (CallExpr fn@(Or (Function "fmt.Fprint") (Function "fmt.Fprintln")) [_ (CallExpr (Function "fmt.Sprintf") f:_)]))`) checkTestingErrorSprintfQ = pattern.MustParse(` (CallExpr sel@(SelectorExpr recv (Ident name@(Or "Error" "Fatal" "Fatalln" "Log" "Panic" "Panicln" "Print" "Println" "Skip"))) [(CallExpr (Function "fmt.Sprintf") args)])`) checkLogSprintfQ = pattern.MustParse(` (CallExpr (Function (Or "log.Fatal" "log.Fatalln" "log.Panic" "log.Panicln" "log.Print" "log.Println")) [(CallExpr (Function "fmt.Sprintf") args)])`) checkSprintfMapping = map[string]struct { recv string alternative string }{ "(*testing.common).Error": {"(*testing.common)", "Errorf"}, "(testing.TB).Error": {"(testing.TB)", "Errorf"}, "(*testing.common).Fatal": {"(*testing.common)", "Fatalf"}, "(testing.TB).Fatal": {"(testing.TB)", "Fatalf"}, "(*testing.common).Log": {"(*testing.common)", "Logf"}, "(testing.TB).Log": {"(testing.TB)", "Logf"}, "(*testing.common).Skip": {"(*testing.common)", "Skipf"}, "(testing.TB).Skip": {"(testing.TB)", "Skipf"}, "(*log.Logger).Fatal": {"(*log.Logger)", "Fatalf"}, "(*log.Logger).Fatalln": {"(*log.Logger)", "Fatalf"}, "(*log.Logger).Panic": {"(*log.Logger)", "Panicf"}, "(*log.Logger).Panicln": {"(*log.Logger)", "Panicf"}, "(*log.Logger).Print": {"(*log.Logger)", "Printf"}, "(*log.Logger).Println": {"(*log.Logger)", "Printf"}, "log.Fatal": {"", "log.Fatalf"}, "log.Fatalln": {"", "log.Fatalf"}, "log.Panic": {"", "log.Panicf"}, "log.Panicln": {"", "log.Panicf"}, "log.Print": {"", "log.Printf"}, "log.Println": {"", "log.Printf"}, } ) func CheckPrintSprintf(pass *analysis.Pass) (interface{}, error) { fmtPrintf := func(node ast.Node) { m, ok := code.Match(pass, checkPrintSprintQ, node) if !ok { return } name := m.State["fn"].(*types.Func).Name() var msg string switch name { case "Print", "Fprint", "Sprint": newname := name + "f" msg = fmt.Sprintf("should use fmt.%s instead of fmt.%s(fmt.Sprintf(...))", newname, name) case "Println", "Fprintln", "Sprintln": if _, ok := m.State["f"].(*ast.BasicLit); !ok { // This may be an instance of // fmt.Println(fmt.Sprintf(arg, ...)) where arg is an // externally provided format string and the caller // cannot guarantee that the format string ends with a // newline. return } newname := name[:len(name)-2] + "f" msg = fmt.Sprintf("should use fmt.%s instead of fmt.%s(fmt.Sprintf(...)) (but don't forget the newline)", newname, name) } report.Report(pass, node, msg, report.FilterGenerated()) } methSprintf := func(node ast.Node) { m, ok := code.Match(pass, checkTestingErrorSprintfQ, node) if !ok { return } mapped, ok := checkSprintfMapping[code.CallName(pass, node.(*ast.CallExpr))] if !ok { return } // Ensure that Errorf/Fatalf refer to the right method recvTV, ok := pass.TypesInfo.Types[m.State["recv"].(ast.Expr)] if !ok { return } obj, _, _ := types.LookupFieldOrMethod(recvTV.Type, recvTV.Addressable(), nil, mapped.alternative) f, ok := obj.(*types.Func) if !ok { return } if typeutil.FuncName(f) != mapped.recv+"."+mapped.alternative { return } alt := &ast.SelectorExpr{ X: m.State["recv"].(ast.Expr), Sel: &ast.Ident{Name: mapped.alternative}, } report.Report(pass, node, fmt.Sprintf("should use %s(...) instead of %s(fmt.Sprintf(...))", report.Render(pass, alt), report.Render(pass, m.State["sel"].(*ast.SelectorExpr)))) } pkgSprintf := func(node ast.Node) { _, ok := code.Match(pass, checkLogSprintfQ, node) if !ok { return } callName := code.CallName(pass, node.(*ast.CallExpr)) mapped, ok := checkSprintfMapping[callName] if !ok { return } report.Report(pass, node, fmt.Sprintf("should use %s(...) instead of %s(fmt.Sprintf(...))", mapped.alternative, callName)) } fn := func(node ast.Node) { fmtPrintf(node) // TODO(dh): add suggested fixes methSprintf(node) pkgSprintf(node) } code.Preorder(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } var checkSprintLiteralQ = pattern.MustParse(` (CallExpr fn@(Or (Function "fmt.Sprint") (Function "fmt.Sprintf")) [lit@(BasicLit "STRING" _)])`) func CheckSprintLiteral(pass *analysis.Pass) (interface{}, error) { // We only flag calls with string literals, not expressions of // type string, because some people use fmt.Sprint(s) as a pattern // for copying strings, which may be useful when extracting a small // substring from a large string. fn := func(node ast.Node) { m, ok := code.Match(pass, checkSprintLiteralQ, node) if !ok { return } callee := m.State["fn"].(*types.Func) lit := m.State["lit"].(*ast.BasicLit) if callee.Name() == "Sprintf" { if strings.ContainsRune(lit.Value, '%') { // This might be a format string return } } report.Report(pass, node, fmt.Sprintf("unnecessary use of fmt.%s", callee.Name()), report.FilterGenerated(), report.Fixes(edit.Fix("Replace with string literal", edit.ReplaceWithNode(pass.Fset, node, lit)))) } code.Preorder(pass, fn, (*ast.CallExpr)(nil)) return nil, nil } func CheckSameTypeTypeAssertion(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { expr := node.(*ast.TypeAssertExpr) if expr.Type == nil { // skip type switches // // TODO(dh): we could flag type switches, too, when a case // statement has the same type as expr.X – however, // depending on the location of that case, it might behave // identically to a default branch. we need to think // carefully about the instances we want to flag. We also // have to take nil interface values into consideration. // // It might make more sense to extend SA4020 to handle // this. return } t1 := pass.TypesInfo.TypeOf(expr.Type) t2 := pass.TypesInfo.TypeOf(expr.X) if types.IsInterface(t1) && types.Identical(t1, t2) { report.Report(pass, expr, fmt.Sprintf("type assertion to the same type: %s already has type %s", report.Render(pass, expr.X), report.Render(pass, expr.Type)), report.FilterGenerated()) } } // TODO(dh): add suggested fixes. we need different fixes depending on the context: // - assignment with 1 or 2 lhs // - assignment to blank identifiers (as the first, second or both lhs) // - initializers in if statements, with the same variations as above code.Preorder(pass, fn, (*ast.TypeAssertExpr)(nil)) return nil, nil }