Merge pull request #92 from squat/non_linux

pkg/*: allow kgctl to compile for other OSes
This commit is contained in:
Lucas Servén Marín 2020-11-14 12:31:28 +01:00 committed by GitHub
commit 6ab9913c7b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 1580 additions and 1475 deletions

View File

@ -20,6 +20,7 @@ install: true
script:
- make
- make all-build
- make clean
- make unit
- make lint

View File

@ -11,5 +11,5 @@ LABEL maintainer="squat <lserven@gmail.com>"
RUN echo -e "https://alpine.global.ssl.fastly.net/alpine/v3.12/main\nhttps://alpine.global.ssl.fastly.net/alpine/v3.12/community" > /etc/apk/repositories && \
apk add --no-cache ipset iptables ip6tables wireguard-tools
COPY --from=cni bridge host-local loopback portmap /opt/cni/bin/
COPY bin/$GOARCH/kg /opt/bin/
COPY bin/linux/$GOARCH/kg /opt/bin/
ENTRYPOINT ["/opt/bin/kg"]

View File

@ -1,10 +1,16 @@
export GO111MODULE=on
.PHONY: push container clean container-name container-latest push-latest fmt lint test unit vendor header generate client deepcopy informer lister openapi manifest manfest-latest manifest-annotate manifest manfest-latest manifest-annotate
ARCH ?= amd64
OS ?= $(shell go env GOOS)
ARCH ?= $(shell go env GOARCH)
ALL_OS := linux darwin windows
ALL_ARCH := amd64 arm arm64
DOCKER_ARCH := "amd64" "arm v7" "arm64 v8"
BINS := $(addprefix bin/$(ARCH)/,kg kgctl)
ifeq ($(OS),linux)
BINS := bin/$(OS)/$(ARCH)/kg bin/$(OS)/$(ARCH)/kgctl
else
BINS := bin/$(OS)/$(ARCH)/kgctl
endif
PROJECT := kilo
PKG := github.com/squat/$(PROJECT)
REGISTRY ?= index.docker.io
@ -39,7 +45,7 @@ BASE_IMAGE ?= alpine:3.12
build: $(BINS)
build-%:
@$(MAKE) --no-print-directory ARCH=$* build
@$(MAKE) --no-print-directory OS=$(word 1,$(subst -, ,$*)) ARCH=$(word 2,$(subst -, ,$*)) build
container-latest-%:
@$(MAKE) --no-print-directory ARCH=$* container-latest
@ -53,7 +59,7 @@ push-latest-%:
push-%:
@$(MAKE) --no-print-directory ARCH=$* push
all-build: $(addprefix build-, $(ALL_ARCH))
all-build: $(foreach os, $(ALL_OS), $(addprefix build-$(os)-, $(ALL_ARCH)))
all-container: $(addprefix container-, $(ALL_ARCH))
@ -133,7 +139,7 @@ pkg/k8s/apis/kilo/v1alpha1/openapi_generated.go: pkg/k8s/apis/kilo/v1alpha1/type
go fmt $@
$(BINS): $(SRC) go.mod
@mkdir -p bin/$(ARCH)
@mkdir -p bin/$(word 2,$(subst /, ,$*))/$(word 3,$(subst /, ,$*))
@echo "building: $@"
@docker run --rm \
-u $$(id -u):$$(id -g) \
@ -141,8 +147,8 @@ $(BINS): $(SRC) go.mod
-w /$(PROJECT) \
$(BUILD_IMAGE) \
/bin/sh -c " \
GOARCH=$(ARCH) \
GOOS=linux \
GOARCH=$(word 3,$(subst /, ,$*)) \
GOOS=$(word 2,$(subst /, ,$*)) \
GOCACHE=/$(PROJECT)/.cache \
CGO_ENABLED=0 \
go build -mod=vendor -o $@ \
@ -201,9 +207,9 @@ header: .header
exit 1; \
fi
tmp/help.txt: bin/$(ARCH)/kg
tmp/help.txt: bin/$(OS)/$(ARCH)/kg
mkdir -p tmp
bin/$(ARCH)/kg --help 2>&1 | head -n -1 > $@
bin//$(OS)/$(ARCH)/kg --help 2>&1 | head -n -1 > $@
docs/kg.md: $(EMBEDMD_BINARY) tmp/help.txt
$(EMBEDMD_BINARY) -w $@
@ -224,7 +230,7 @@ website/build/index.html: website/docs/README.md
yarn --cwd website build
container: .container-$(ARCH)-$(VERSION) container-name
.container-$(ARCH)-$(VERSION): $(BINS) Dockerfile
.container-$(ARCH)-$(VERSION): bin/linux/$(ARCH)/kg Dockerfile
@i=0; for a in $(ALL_ARCH); do [ "$$a" = $(ARCH) ] && break; i=$$((i+1)); done; \
ia=""; iv=""; \
j=0; for a in $(DOCKER_ARCH); do \

152
pkg/mesh/backend.go Normal file
View File

@ -0,0 +1,152 @@
// Copyright 2019 the Kilo authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mesh
import (
"net"
"time"
"github.com/squat/kilo/pkg/wireguard"
)
const (
// resyncPeriod is how often the mesh checks state if no events have been received.
resyncPeriod = 30 * time.Second
// DefaultKiloInterface is the default iterface created and used by Kilo.
DefaultKiloInterface = "kilo0"
// DefaultKiloPort is the default UDP port Kilo uses.
DefaultKiloPort = 51820
// DefaultCNIPath is the default path to the CNI config file.
DefaultCNIPath = "/etc/cni/net.d/10-kilo.conflist"
)
// DefaultKiloSubnet is the default CIDR for Kilo.
var DefaultKiloSubnet = &net.IPNet{IP: []byte{10, 4, 0, 0}, Mask: []byte{255, 255, 0, 0}}
// Granularity represents the abstraction level at which the network
// should be meshed.
type Granularity string
const (
// LogicalGranularity indicates that the network should create
// a mesh between logical locations, e.g. data-centers, but not between
// all nodes within a single location.
LogicalGranularity Granularity = "location"
// FullGranularity indicates that the network should create
// a mesh between every node.
FullGranularity Granularity = "full"
)
// Node represents a node in the network.
type Node struct {
Endpoint *wireguard.Endpoint
Key []byte
InternalIP *net.IPNet
// LastSeen is a Unix time for the last time
// the node confirmed it was live.
LastSeen int64
// Leader is a suggestion to Kilo that
// the node wants to lead its segment.
Leader bool
Location string
Name string
PersistentKeepalive int
Subnet *net.IPNet
WireGuardIP *net.IPNet
}
// Ready indicates whether or not the node is ready.
func (n *Node) Ready() bool {
// Nodes that are not leaders will not have WireGuardIPs, so it is not required.
return n != nil && n.Endpoint != nil && !(n.Endpoint.IP == nil && n.Endpoint.DNS == "") && n.Endpoint.Port != 0 && n.Key != nil && n.InternalIP != nil && n.Subnet != nil && time.Now().Unix()-n.LastSeen < int64(resyncPeriod)*2/int64(time.Second)
}
// Peer represents a peer in the network.
type Peer struct {
wireguard.Peer
Name string
}
// Ready indicates whether or not the peer is ready.
// Peers can have empty endpoints because they may not have an
// IP, for example if they are behind a NAT, and thus
// will not declare their endpoint and instead allow it to be
// discovered.
func (p *Peer) Ready() bool {
return p != nil && p.AllowedIPs != nil && len(p.AllowedIPs) != 0 && p.PublicKey != nil
}
// EventType describes what kind of an action an event represents.
type EventType string
const (
// AddEvent represents an action where an item was added.
AddEvent EventType = "add"
// DeleteEvent represents an action where an item was removed.
DeleteEvent EventType = "delete"
// UpdateEvent represents an action where an item was updated.
UpdateEvent EventType = "update"
)
// NodeEvent represents an event concerning a node in the cluster.
type NodeEvent struct {
Type EventType
Node *Node
Old *Node
}
// PeerEvent represents an event concerning a peer in the cluster.
type PeerEvent struct {
Type EventType
Peer *Peer
Old *Peer
}
// Backend can create clients for all of the
// primitive types that Kilo deals with, namely:
// * nodes; and
// * peers.
type Backend interface {
Nodes() NodeBackend
Peers() PeerBackend
}
// NodeBackend can get nodes by name, init itself,
// list the nodes that should be meshed,
// set Kilo properties for a node,
// clean up any changes applied to the backend,
// and watch for changes to nodes.
type NodeBackend interface {
CleanUp(string) error
Get(string) (*Node, error)
Init(<-chan struct{}) error
List() ([]*Node, error)
Set(string, *Node) error
Watch() <-chan *NodeEvent
}
// PeerBackend can get peers by name, init itself,
// list the peers that should be in the mesh,
// set fields for a peer,
// clean up any changes applied to the backend,
// and watch for changes to peers.
type PeerBackend interface {
CleanUp(string) error
Get(string) (*Peer, error)
Init(<-chan struct{}) error
List() ([]*Peer, error)
Set(string, *Peer) error
Watch() <-chan *PeerEvent
}

View File

@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
package mesh
import (

288
pkg/mesh/discoverips.go Normal file
View File

@ -0,0 +1,288 @@
// Copyright 2019 the Kilo authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
package mesh
import (
"errors"
"fmt"
"net"
"sort"
"github.com/vishvananda/netlink"
)
// getIP returns a private and public IP address for the local node.
// It selects the private IP address in the following order:
// - private IP to which hostname resolves
// - private IP assigned to interface of default route
// - private IP assigned to local interface
// - public IP to which hostname resolves
// - public IP assigned to interface of default route
// - public IP assigned to local interface
// It selects the public IP address in the following order:
// - public IP to which hostname resolves
// - public IP assigned to interface of default route
// - public IP assigned to local interface
// - private IP to which hostname resolves
// - private IP assigned to interface of default route
// - private IP assigned to local interface
// - if no IP was found, return nil and an error.
func getIP(hostname string, ignoreIfaces ...int) (*net.IPNet, *net.IPNet, error) {
ignore := make(map[string]struct{})
for i := range ignoreIfaces {
if ignoreIfaces[i] == 0 {
// Only ignore valid interfaces.
continue
}
iface, err := net.InterfaceByIndex(ignoreIfaces[i])
if err != nil {
return nil, nil, fmt.Errorf("failed to find interface %d: %v", ignoreIfaces[i], err)
}
ips, err := ipsForInterface(iface)
if err != nil {
return nil, nil, err
}
for _, ip := range ips {
ignore[ip.String()] = struct{}{}
ignore[oneAddressCIDR(ip.IP).String()] = struct{}{}
}
}
var hostPriv, hostPub []*net.IPNet
{
// Check IPs to which hostname resolves first.
ips := ipsForHostname(hostname)
for _, ip := range ips {
ok, mask, err := assignedToInterface(ip)
if err != nil {
return nil, nil, fmt.Errorf("failed to search locally assigned addresses: %v", err)
}
if !ok {
continue
}
ip.Mask = mask
if isPublic(ip.IP) {
hostPub = append(hostPub, ip)
continue
}
hostPriv = append(hostPriv, ip)
}
sortIPs(hostPriv)
sortIPs(hostPub)
}
var defaultPriv, defaultPub []*net.IPNet
{
// Check IPs on interface for default route next.
iface, err := defaultInterface()
if err != nil {
return nil, nil, err
}
ips, err := ipsForInterface(iface)
if err != nil {
return nil, nil, err
}
for _, ip := range ips {
if isLocal(ip.IP) {
continue
}
if isPublic(ip.IP) {
defaultPub = append(defaultPub, ip)
continue
}
defaultPriv = append(defaultPriv, ip)
}
sortIPs(defaultPriv)
sortIPs(defaultPub)
}
var interfacePriv, interfacePub []*net.IPNet
{
// Finally look for IPs on all interfaces.
ips, err := ipsForAllInterfaces()
if err != nil {
return nil, nil, err
}
for _, ip := range ips {
if isLocal(ip.IP) {
continue
}
if isPublic(ip.IP) {
interfacePub = append(interfacePub, ip)
continue
}
interfacePriv = append(interfacePriv, ip)
}
sortIPs(interfacePriv)
sortIPs(interfacePub)
}
var priv, pub, tmpPriv, tmpPub []*net.IPNet
tmpPriv = append(tmpPriv, hostPriv...)
tmpPriv = append(tmpPriv, defaultPriv...)
tmpPriv = append(tmpPriv, interfacePriv...)
tmpPub = append(tmpPub, hostPub...)
tmpPub = append(tmpPub, defaultPub...)
tmpPub = append(tmpPub, interfacePub...)
for i := range tmpPriv {
if _, ok := ignore[tmpPriv[i].String()]; ok {
continue
}
priv = append(priv, tmpPriv[i])
}
for i := range tmpPub {
if _, ok := ignore[tmpPub[i].String()]; ok {
continue
}
pub = append(pub, tmpPub[i])
}
if len(priv) == 0 && len(pub) == 0 {
return nil, nil, errors.New("no valid IP was found")
}
if len(priv) == 0 {
priv = pub
}
if len(pub) == 0 {
pub = priv
}
return priv[0], pub[0], nil
}
func assignedToInterface(ip *net.IPNet) (bool, net.IPMask, error) {
links, err := netlink.LinkList()
if err != nil {
return false, nil, fmt.Errorf("failed to list interfaces: %v", err)
}
// Sort the links for stability.
sort.Slice(links, func(i, j int) bool {
return links[i].Attrs().Name < links[j].Attrs().Name
})
for _, link := range links {
addrs, err := netlink.AddrList(link, netlink.FAMILY_ALL)
if err != nil {
return false, nil, fmt.Errorf("failed to list addresses for %s: %v", link.Attrs().Name, err)
}
// Sort the IPs for stability.
sort.Slice(addrs, func(i, j int) bool {
return addrs[i].String() < addrs[j].String()
})
for i := range addrs {
if ip.IP.Equal(addrs[i].IP) {
return true, addrs[i].Mask, nil
}
}
}
return false, nil, nil
}
// ipsForHostname returns a slice of IPs to which the
// given hostname resolves.
func ipsForHostname(hostname string) []*net.IPNet {
if ip := net.ParseIP(hostname); ip != nil {
return []*net.IPNet{oneAddressCIDR(ip)}
}
ips, err := net.LookupIP(hostname)
if err != nil {
// Most likely the hostname is not resolvable.
return nil
}
nets := make([]*net.IPNet, len(ips))
for i := range ips {
nets[i] = oneAddressCIDR(ips[i])
}
return nets
}
// ipsForAllInterfaces returns a slice of IPs assigned to all the
// interfaces on the host.
func ipsForAllInterfaces() ([]*net.IPNet, error) {
ifaces, err := net.Interfaces()
if err != nil {
return nil, fmt.Errorf("failed to list interfaces: %v", err)
}
var nets []*net.IPNet
for _, iface := range ifaces {
ips, err := ipsForInterface(&iface)
if err != nil {
return nil, fmt.Errorf("failed to list addresses for %s: %v", iface.Name, err)
}
nets = append(nets, ips...)
}
return nets, nil
}
// ipsForInterface returns a slice of IPs assigned to the given interface.
func ipsForInterface(iface *net.Interface) ([]*net.IPNet, error) {
link, err := netlink.LinkByIndex(iface.Index)
if err != nil {
return nil, fmt.Errorf("failed to get link: %s", err)
}
addrs, err := netlink.AddrList(link, netlink.FAMILY_ALL)
if err != nil {
return nil, fmt.Errorf("failed to list addresses for %s: %v", iface.Name, err)
}
var ips []*net.IPNet
for _, a := range addrs {
if a.IPNet != nil {
ips = append(ips, a.IPNet)
}
}
return ips, nil
}
// interfacesForIP returns a slice of interfaces withthe given IP.
func interfacesForIP(ip *net.IPNet) ([]net.Interface, error) {
ifaces, err := net.Interfaces()
if err != nil {
return nil, fmt.Errorf("failed to list interfaces: %v", err)
}
var interfaces []net.Interface
for _, iface := range ifaces {
ips, err := ipsForInterface(&iface)
if err != nil {
return nil, fmt.Errorf("failed to list addresses for %s: %v", iface.Name, err)
}
for i := range ips {
if ip.IP.Equal(ips[i].IP) {
interfaces = append(interfaces, iface)
break
}
}
}
if len(interfaces) == 0 {
return nil, fmt.Errorf("no interface has %s assigned", ip.String())
}
return interfaces, nil
}
// defaultInterface returns the interface for the default route of the host.
func defaultInterface() (*net.Interface, error) {
routes, err := netlink.RouteList(nil, netlink.FAMILY_ALL)
if err != nil {
return nil, err
}
for _, route := range routes {
if route.Dst == nil || route.Dst.String() == "0.0.0.0/0" || route.Dst.String() == "::/0" {
if route.LinkIndex <= 0 {
return nil, errors.New("failed to determine interface of route")
}
return net.InterfaceByIndex(route.LinkIndex)
}
}
return nil, errors.New("failed to find default route")
}

View File

@ -15,150 +15,10 @@
package mesh
import (
"errors"
"fmt"
"net"
"sort"
"github.com/vishvananda/netlink"
)
// getIP returns a private and public IP address for the local node.
// It selects the private IP address in the following order:
// - private IP to which hostname resolves
// - private IP assigned to interface of default route
// - private IP assigned to local interface
// - public IP to which hostname resolves
// - public IP assigned to interface of default route
// - public IP assigned to local interface
// It selects the public IP address in the following order:
// - public IP to which hostname resolves
// - public IP assigned to interface of default route
// - public IP assigned to local interface
// - private IP to which hostname resolves
// - private IP assigned to interface of default route
// - private IP assigned to local interface
// - if no IP was found, return nil and an error.
func getIP(hostname string, ignoreIfaces ...int) (*net.IPNet, *net.IPNet, error) {
ignore := make(map[string]struct{})
for i := range ignoreIfaces {
if ignoreIfaces[i] == 0 {
// Only ignore valid interfaces.
continue
}
iface, err := net.InterfaceByIndex(ignoreIfaces[i])
if err != nil {
return nil, nil, fmt.Errorf("failed to find interface %d: %v", ignoreIfaces[i], err)
}
ips, err := ipsForInterface(iface)
if err != nil {
return nil, nil, err
}
for _, ip := range ips {
ignore[ip.String()] = struct{}{}
ignore[oneAddressCIDR(ip.IP).String()] = struct{}{}
}
}
var hostPriv, hostPub []*net.IPNet
{
// Check IPs to which hostname resolves first.
ips := ipsForHostname(hostname)
for _, ip := range ips {
ok, mask, err := assignedToInterface(ip)
if err != nil {
return nil, nil, fmt.Errorf("failed to search locally assigned addresses: %v", err)
}
if !ok {
continue
}
ip.Mask = mask
if isPublic(ip.IP) {
hostPub = append(hostPub, ip)
continue
}
hostPriv = append(hostPriv, ip)
}
sortIPs(hostPriv)
sortIPs(hostPub)
}
var defaultPriv, defaultPub []*net.IPNet
{
// Check IPs on interface for default route next.
iface, err := defaultInterface()
if err != nil {
return nil, nil, err
}
ips, err := ipsForInterface(iface)
if err != nil {
return nil, nil, err
}
for _, ip := range ips {
if isLocal(ip.IP) {
continue
}
if isPublic(ip.IP) {
defaultPub = append(defaultPub, ip)
continue
}
defaultPriv = append(defaultPriv, ip)
}
sortIPs(defaultPriv)
sortIPs(defaultPub)
}
var interfacePriv, interfacePub []*net.IPNet
{
// Finally look for IPs on all interfaces.
ips, err := ipsForAllInterfaces()
if err != nil {
return nil, nil, err
}
for _, ip := range ips {
if isLocal(ip.IP) {
continue
}
if isPublic(ip.IP) {
interfacePub = append(interfacePub, ip)
continue
}
interfacePriv = append(interfacePriv, ip)
}
sortIPs(interfacePriv)
sortIPs(interfacePub)
}
var priv, pub, tmpPriv, tmpPub []*net.IPNet
tmpPriv = append(tmpPriv, hostPriv...)
tmpPriv = append(tmpPriv, defaultPriv...)
tmpPriv = append(tmpPriv, interfacePriv...)
tmpPub = append(tmpPub, hostPub...)
tmpPub = append(tmpPub, defaultPub...)
tmpPub = append(tmpPub, interfacePub...)
for i := range tmpPriv {
if _, ok := ignore[tmpPriv[i].String()]; ok {
continue
}
priv = append(priv, tmpPriv[i])
}
for i := range tmpPub {
if _, ok := ignore[tmpPub[i].String()]; ok {
continue
}
pub = append(pub, tmpPub[i])
}
if len(priv) == 0 && len(pub) == 0 {
return nil, nil, errors.New("no valid IP was found")
}
if len(priv) == 0 {
priv = pub
}
if len(pub) == 0 {
pub = priv
}
return priv[0], pub[0], nil
}
// sortIPs sorts IPs so the result is stable.
// It will first sort IPs by type, to prefer selecting
// IPs of the same type, and then by value.
@ -175,33 +35,6 @@ func sortIPs(ips []*net.IPNet) {
})
}
func assignedToInterface(ip *net.IPNet) (bool, net.IPMask, error) {
links, err := netlink.LinkList()
if err != nil {
return false, nil, fmt.Errorf("failed to list interfaces: %v", err)
}
// Sort the links for stability.
sort.Slice(links, func(i, j int) bool {
return links[i].Attrs().Name < links[j].Attrs().Name
})
for _, link := range links {
addrs, err := netlink.AddrList(link, netlink.FAMILY_ALL)
if err != nil {
return false, nil, fmt.Errorf("failed to list addresses for %s: %v", link.Attrs().Name, err)
}
// Sort the IPs for stability.
sort.Slice(addrs, func(i, j int) bool {
return addrs[i].String() < addrs[j].String()
})
for i := range addrs {
if ip.IP.Equal(addrs[i].IP) {
return true, addrs[i].Mask, nil
}
}
}
return false, nil, nil
}
func isLocal(ip net.IP) bool {
return ip.IsLoopback() || ip.IsLinkLocalMulticast() || ip.IsLinkLocalUnicast()
}
@ -236,105 +69,6 @@ func isPublic(ip net.IP) bool {
return false
}
// ipsForHostname returns a slice of IPs to which the
// given hostname resolves.
func ipsForHostname(hostname string) []*net.IPNet {
if ip := net.ParseIP(hostname); ip != nil {
return []*net.IPNet{oneAddressCIDR(ip)}
}
ips, err := net.LookupIP(hostname)
if err != nil {
// Most likely the hostname is not resolvable.
return nil
}
nets := make([]*net.IPNet, len(ips))
for i := range ips {
nets[i] = oneAddressCIDR(ips[i])
}
return nets
}
// ipsForAllInterfaces returns a slice of IPs assigned to all the
// interfaces on the host.
func ipsForAllInterfaces() ([]*net.IPNet, error) {
ifaces, err := net.Interfaces()
if err != nil {
return nil, fmt.Errorf("failed to list interfaces: %v", err)
}
var nets []*net.IPNet
for _, iface := range ifaces {
ips, err := ipsForInterface(&iface)
if err != nil {
return nil, fmt.Errorf("failed to list addresses for %s: %v", iface.Name, err)
}
nets = append(nets, ips...)
}
return nets, nil
}
// ipsForInterface returns a slice of IPs assigned to the given interface.
func ipsForInterface(iface *net.Interface) ([]*net.IPNet, error) {
link, err := netlink.LinkByIndex(iface.Index)
if err != nil {
return nil, fmt.Errorf("failed to get link: %s", err)
}
addrs, err := netlink.AddrList(link, netlink.FAMILY_ALL)
if err != nil {
return nil, fmt.Errorf("failed to list addresses for %s: %v", iface.Name, err)
}
var ips []*net.IPNet
for _, a := range addrs {
if a.IPNet != nil {
ips = append(ips, a.IPNet)
}
}
return ips, nil
}
// interfacesForIP returns a slice of interfaces withthe given IP.
func interfacesForIP(ip *net.IPNet) ([]net.Interface, error) {
ifaces, err := net.Interfaces()
if err != nil {
return nil, fmt.Errorf("failed to list interfaces: %v", err)
}
var interfaces []net.Interface
for _, iface := range ifaces {
ips, err := ipsForInterface(&iface)
if err != nil {
return nil, fmt.Errorf("failed to list addresses for %s: %v", iface.Name, err)
}
for i := range ips {
if ip.IP.Equal(ips[i].IP) {
interfaces = append(interfaces, iface)
break
}
}
}
if len(interfaces) == 0 {
return nil, fmt.Errorf("no interface has %s assigned", ip.String())
}
return interfaces, nil
}
// defaultInterface returns the interface for the default route of the host.
func defaultInterface() (*net.Interface, error) {
routes, err := netlink.RouteList(nil, netlink.FAMILY_ALL)
if err != nil {
return nil, err
}
for _, route := range routes {
if route.Dst == nil || route.Dst.String() == "0.0.0.0/0" || route.Dst.String() == "::/0" {
if route.LinkIndex <= 0 {
return nil, errors.New("failed to determine interface of route")
}
return net.InterfaceByIndex(route.LinkIndex)
}
}
return nil, errors.New("failed to find default route")
}
type allocator struct {
bits int
ones int

View File

@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
package mesh
import (
@ -35,142 +37,15 @@ import (
"github.com/squat/kilo/pkg/wireguard"
)
const resyncPeriod = 30 * time.Second
const (
// KiloPath is the directory where Kilo stores its configuration.
KiloPath = "/var/lib/kilo"
// PrivateKeyPath is the filepath where the WireGuard private key is stored.
PrivateKeyPath = KiloPath + "/key"
// ConfPath is the filepath where the WireGuard configuration is stored.
ConfPath = KiloPath + "/conf"
// DefaultKiloInterface is the default iterface created and used by Kilo.
DefaultKiloInterface = "kilo0"
// DefaultKiloPort is the default UDP port Kilo uses.
DefaultKiloPort = 51820
// DefaultCNIPath is the default path to the CNI config file.
DefaultCNIPath = "/etc/cni/net.d/10-kilo.conflist"
// kiloPath is the directory where Kilo stores its configuration.
kiloPath = "/var/lib/kilo"
// privateKeyPath is the filepath where the WireGuard private key is stored.
privateKeyPath = kiloPath + "/key"
// confPath is the filepath where the WireGuard configuration is stored.
confPath = kiloPath + "/conf"
)
// DefaultKiloSubnet is the default CIDR for Kilo.
var DefaultKiloSubnet = &net.IPNet{IP: []byte{10, 4, 0, 0}, Mask: []byte{255, 255, 0, 0}}
// Granularity represents the abstraction level at which the network
// should be meshed.
type Granularity string
const (
// LogicalGranularity indicates that the network should create
// a mesh between logical locations, e.g. data-centers, but not between
// all nodes within a single location.
LogicalGranularity Granularity = "location"
// FullGranularity indicates that the network should create
// a mesh between every node.
FullGranularity Granularity = "full"
)
// Node represents a node in the network.
type Node struct {
Endpoint *wireguard.Endpoint
Key []byte
InternalIP *net.IPNet
// LastSeen is a Unix time for the last time
// the node confirmed it was live.
LastSeen int64
// Leader is a suggestion to Kilo that
// the node wants to lead its segment.
Leader bool
Location string
Name string
PersistentKeepalive int
Subnet *net.IPNet
WireGuardIP *net.IPNet
}
// Ready indicates whether or not the node is ready.
func (n *Node) Ready() bool {
// Nodes that are not leaders will not have WireGuardIPs, so it is not required.
return n != nil && n.Endpoint != nil && !(n.Endpoint.IP == nil && n.Endpoint.DNS == "") && n.Endpoint.Port != 0 && n.Key != nil && n.InternalIP != nil && n.Subnet != nil && time.Now().Unix()-n.LastSeen < int64(resyncPeriod)*2/int64(time.Second)
}
// Peer represents a peer in the network.
type Peer struct {
wireguard.Peer
Name string
}
// Ready indicates whether or not the peer is ready.
// Peers can have empty endpoints because they may not have an
// IP, for example if they are behind a NAT, and thus
// will not declare their endpoint and instead allow it to be
// discovered.
func (p *Peer) Ready() bool {
return p != nil && p.AllowedIPs != nil && len(p.AllowedIPs) != 0 && p.PublicKey != nil
}
// EventType describes what kind of an action an event represents.
type EventType string
const (
// AddEvent represents an action where an item was added.
AddEvent EventType = "add"
// DeleteEvent represents an action where an item was removed.
DeleteEvent EventType = "delete"
// UpdateEvent represents an action where an item was updated.
UpdateEvent EventType = "update"
)
// NodeEvent represents an event concerning a node in the cluster.
type NodeEvent struct {
Type EventType
Node *Node
Old *Node
}
// PeerEvent represents an event concerning a peer in the cluster.
type PeerEvent struct {
Type EventType
Peer *Peer
Old *Peer
}
// Backend can create clients for all of the
// primitive types that Kilo deals with, namely:
// * nodes; and
// * peers.
type Backend interface {
Nodes() NodeBackend
Peers() PeerBackend
}
// NodeBackend can get nodes by name, init itself,
// list the nodes that should be meshed,
// set Kilo properties for a node,
// clean up any changes applied to the backend,
// and watch for changes to nodes.
type NodeBackend interface {
CleanUp(string) error
Get(string) (*Node, error)
Init(<-chan struct{}) error
List() ([]*Node, error)
Set(string, *Node) error
Watch() <-chan *NodeEvent
}
// PeerBackend can get peers by name, init itself,
// list the peers that should be in the mesh,
// set fields for a peer,
// clean up any changes applied to the backend,
// and watch for changes to peers.
type PeerBackend interface {
CleanUp(string) error
Get(string) (*Peer, error)
Init(<-chan struct{}) error
List() ([]*Peer, error)
Set(string, *Peer) error
Watch() <-chan *PeerEvent
}
// Mesh is able to create Kilo network meshes.
type Mesh struct {
Backend
@ -211,10 +86,10 @@ type Mesh struct {
// New returns a new Mesh instance.
func New(backend Backend, enc encapsulation.Encapsulator, granularity Granularity, hostname string, port uint32, subnet *net.IPNet, local, cni bool, cniPath, iface string, cleanUpIface bool, logger log.Logger) (*Mesh, error) {
if err := os.MkdirAll(KiloPath, 0700); err != nil {
if err := os.MkdirAll(kiloPath, 0700); err != nil {
return nil, fmt.Errorf("failed to create directory to store configuration: %v", err)
}
private, err := ioutil.ReadFile(PrivateKeyPath)
private, err := ioutil.ReadFile(privateKeyPath)
private = bytes.Trim(private, "\n")
if err != nil {
level.Warn(logger).Log("msg", "no private key found on disk; generating one now")
@ -226,7 +101,7 @@ func New(backend Backend, enc encapsulation.Encapsulator, granularity Granularit
if err != nil {
return nil, err
}
if err := ioutil.WriteFile(PrivateKeyPath, private, 0600); err != nil {
if err := ioutil.WriteFile(privateKeyPath, private, 0600); err != nil {
return nil, fmt.Errorf("failed to write private key to disk: %v", err)
}
cniIndex, err := cniDeviceIndex()
@ -589,7 +464,7 @@ func (m *Mesh) applyTopology() {
m.errorCounter.WithLabelValues("apply").Inc()
return
}
if err := ioutil.WriteFile(ConfPath, buf, 0600); err != nil {
if err := ioutil.WriteFile(confPath, buf, 0600); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
@ -636,7 +511,7 @@ func (m *Mesh) applyTopology() {
equal := conf.Equal(oldConf)
if !equal {
level.Info(m.logger).Log("msg", "WireGuard configurations are different")
if err := wireguard.SetConf(link.Attrs().Name, ConfPath); err != nil {
if err := wireguard.SetConf(link.Attrs().Name, confPath); err != nil {
level.Error(m.logger).Log("error", err)
m.errorCounter.WithLabelValues("apply").Inc()
return
@ -691,7 +566,7 @@ func (m *Mesh) cleanUp() {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to clean up routes: %v", err))
m.errorCounter.WithLabelValues("cleanUp").Inc()
}
if err := os.Remove(ConfPath); err != nil {
if err := os.Remove(confPath); err != nil {
level.Error(m.logger).Log("error", fmt.Sprintf("failed to delete configuration file: %v", err))
m.errorCounter.WithLabelValues("cleanUp").Inc()
}

252
pkg/mesh/routes.go Normal file
View File

@ -0,0 +1,252 @@
// Copyright 2019 the Kilo authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
package mesh
import (
"net"
"github.com/vishvananda/netlink"
"golang.org/x/sys/unix"
"github.com/squat/kilo/pkg/encapsulation"
"github.com/squat/kilo/pkg/iptables"
)
const kiloTableIndex = 1107
// Routes generates a slice of routes for a given Topology.
func (t *Topology) Routes(kiloIfaceName string, kiloIface, privIface, tunlIface int, local bool, enc encapsulation.Encapsulator) ([]*netlink.Route, []*netlink.Rule) {
var routes []*netlink.Route
var rules []*netlink.Rule
if !t.leader {
// Find the GW for this segment.
// This will be the an IP of the leader.
// In an IPIP encapsulated mesh it is the leader's private IP.
var gw net.IP
for _, segment := range t.segments {
if segment.location == t.location {
gw = enc.Gw(segment.endpoint.IP, segment.privateIPs[segment.leader], segment.cidrs[segment.leader])
break
}
}
for _, segment := range t.segments {
// First, add a route to the WireGuard IP of the segment.
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: oneAddressCIDR(segment.wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Add routes for the current segment if local is true.
if segment.location == t.location {
if local {
for i := range segment.cidrs {
// Don't add routes for the local node.
if segment.privateIPs[i].Equal(t.privateIP.IP) {
continue
}
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Encapsulate packets from the host's Pod subnet headed
// to private IPs.
if enc.Strategy() == encapsulation.Always || (enc.Strategy() == encapsulation.CrossSubnet && !t.privateIP.Contains(segment.privateIPs[i])) {
routes = append(routes, &netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
})
rules = append(rules, defaultRule(&netlink.Rule{
Src: t.subnet,
Dst: oneAddressCIDR(segment.privateIPs[i]),
Table: kiloTableIndex,
}))
}
}
}
continue
}
for i := range segment.cidrs {
// Add routes to the Pod CIDRs of nodes in other segments.
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Add routes to the private IPs of nodes in other segments.
// Number of CIDRs and private IPs always match so
// we can reuse the loop.
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
}
}
// Add routes for the allowed IPs of peers.
for _, peer := range t.peers {
for i := range peer.AllowedIPs {
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: peer.AllowedIPs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
}
}
return routes, rules
}
for _, segment := range t.segments {
// Add routes for the current segment if local is true.
if segment.location == t.location {
if local {
for i := range segment.cidrs {
// Don't add routes for the local node.
if segment.privateIPs[i].Equal(t.privateIP.IP) {
continue
}
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Encapsulate packets from the host's Pod subnet headed
// to private IPs.
if enc.Strategy() == encapsulation.Always || (enc.Strategy() == encapsulation.CrossSubnet && !t.privateIP.Contains(segment.privateIPs[i])) {
routes = append(routes, &netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
})
rules = append(rules, defaultRule(&netlink.Rule{
Src: t.subnet,
Dst: oneAddressCIDR(segment.privateIPs[i]),
Table: kiloTableIndex,
}))
// Also encapsulate packets from the Kilo interface
// headed to private IPs.
rules = append(rules, defaultRule(&netlink.Rule{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Table: kiloTableIndex,
IifName: kiloIfaceName,
}))
}
}
}
continue
}
for i := range segment.cidrs {
// Add routes to the Pod CIDRs of nodes in other segments.
routes = append(routes, &netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
// Don't add routes through Kilo if the private IP
// equals the external IP. This means that the node
// is only accessible through an external IP and we
// cannot encapsulate traffic to an IP through the IP.
if segment.privateIPs[i].Equal(segment.endpoint.IP) {
continue
}
// Add routes to the private IPs of nodes in other segments.
// Number of CIDRs and private IPs always match so
// we can reuse the loop.
routes = append(routes, &netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
}
}
// Add routes for the allowed IPs of peers.
for _, peer := range t.peers {
for i := range peer.AllowedIPs {
routes = append(routes, &netlink.Route{
Dst: peer.AllowedIPs[i],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
}
}
return routes, rules
}
func encapsulateRoute(route *netlink.Route, encapsulate encapsulation.Strategy, subnet *net.IPNet, tunlIface int) *netlink.Route {
if encapsulate == encapsulation.Always || (encapsulate == encapsulation.CrossSubnet && !subnet.Contains(route.Gw)) {
route.LinkIndex = tunlIface
}
return route
}
// Rules returns the iptables rules required by the local node.
func (t *Topology) Rules(cni bool) []iptables.Rule {
var rules []iptables.Rule
rules = append(rules, iptables.NewIPv4Chain("nat", "KILO-NAT"))
rules = append(rules, iptables.NewIPv6Chain("nat", "KILO-NAT"))
if cni {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(t.subnet.IP)), "nat", "POSTROUTING", "-m", "comment", "--comment", "Kilo: jump to NAT chain", "-s", t.subnet.String(), "-j", "KILO-NAT"))
}
for _, s := range t.segments {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(s.wireGuardIP)), "nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: do not NAT packets destined for WireGuared IPs", "-d", s.wireGuardIP.String(), "-j", "RETURN"))
for _, aip := range s.allowedIPs {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(aip.IP)), "nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: do not NAT packets destined for known IPs", "-d", aip.String(), "-j", "RETURN"))
}
}
for _, p := range t.peers {
for _, aip := range p.AllowedIPs {
rules = append(rules,
iptables.NewRule(iptables.GetProtocol(len(aip.IP)), "nat", "POSTROUTING", "-m", "comment", "--comment", "Kilo: jump to NAT chain", "-s", aip.String(), "-j", "KILO-NAT"),
iptables.NewRule(iptables.GetProtocol(len(aip.IP)), "nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: do not NAT packets destined for peers", "-d", aip.String(), "-j", "RETURN"),
)
}
}
rules = append(rules, iptables.NewIPv4Rule("nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: NAT remaining packets", "-j", "MASQUERADE"))
rules = append(rules, iptables.NewIPv6Rule("nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: NAT remaining packets", "-j", "MASQUERADE"))
return rules
}
func defaultRule(rule *netlink.Rule) *netlink.Rule {
base := netlink.NewRule()
base.Src = rule.Src
base.Dst = rule.Dst
base.IifName = rule.IifName
base.Table = rule.Table
return base
}

851
pkg/mesh/routes_test.go Normal file
View File

@ -0,0 +1,851 @@
// Copyright 2019 the Kilo authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mesh
import (
"testing"
"github.com/kylelemons/godebug/pretty"
"github.com/vishvananda/netlink"
"golang.org/x/sys/unix"
"github.com/squat/kilo/pkg/encapsulation"
)
func TestRoutes(t *testing.T) {
nodes, peers, key, port := setup(t)
kiloIface := 0
privIface := 1
tunlIface := 2
mustTopoForGranularityAndHost := func(granularity Granularity, hostname string) *Topology {
return mustTopo(t, nodes, peers, granularity, hostname, port, key, DefaultKiloSubnet, 0)
}
for _, tc := range []struct {
name string
local bool
topology *Topology
strategy encapsulation.Strategy
routes []*netlink.Route
rules []*netlink.Rule
}{
{
name: "logical from a",
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].cidrs[1],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from b",
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from c",
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[0].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[0].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[1].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from a",
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from b",
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from c",
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from a local",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from a local always",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name),
strategy: encapsulation.Always,
routes: []*netlink.Route{
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from b local",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["c"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from b local always",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name),
strategy: encapsulation.Always,
routes: []*netlink.Route{
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["c"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["c"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
rules: []*netlink.Rule{
defaultRule(&netlink.Rule{
Src: nodes["b"].Subnet,
Dst: nodes["c"].InternalIP,
Table: kiloTableIndex,
}),
defaultRule(&netlink.Rule{
Dst: nodes["c"].InternalIP,
IifName: DefaultKiloInterface,
Table: kiloTableIndex,
}),
},
},
{
name: "logical from c local",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[0].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[1].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from c local always",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name),
strategy: encapsulation.Always,
routes: []*netlink.Route{
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[0].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[1].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["b"].InternalIP,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
},
{
Dst: peers["a"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
},
rules: []*netlink.Rule{
defaultRule(&netlink.Rule{
Src: nodes["c"].Subnet,
Dst: nodes["b"].InternalIP,
Table: kiloTableIndex,
}),
},
},
{
name: "full from a local",
local: true,
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from b local",
local: true,
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from c local",
local: true,
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
} {
routes, rules := tc.topology.Routes(DefaultKiloInterface, kiloIface, privIface, tunlIface, tc.local, encapsulation.NewIPIP(tc.strategy))
if diff := pretty.Compare(routes, tc.routes); diff != "" {
t.Errorf("test case %q: got diff: %v", tc.name, diff)
}
if diff := pretty.Compare(rules, tc.rules); diff != "" {
t.Errorf("test case %q: got diff: %v", tc.name, diff)
}
}
}

View File

@ -19,16 +19,9 @@ import (
"net"
"sort"
"github.com/vishvananda/netlink"
"golang.org/x/sys/unix"
"github.com/squat/kilo/pkg/encapsulation"
"github.com/squat/kilo/pkg/iptables"
"github.com/squat/kilo/pkg/wireguard"
)
const kiloTableIndex = 1107
// Topology represents the logical structure of the overlay network.
type Topology struct {
// key is the private key of the node creating the topology.
@ -165,193 +158,6 @@ func NewTopology(nodes map[string]*Node, peers map[string]*Peer, granularity Gra
return &t, nil
}
// Routes generates a slice of routes for a given Topology.
func (t *Topology) Routes(kiloIfaceName string, kiloIface, privIface, tunlIface int, local bool, enc encapsulation.Encapsulator) ([]*netlink.Route, []*netlink.Rule) {
var routes []*netlink.Route
var rules []*netlink.Rule
if !t.leader {
// Find the GW for this segment.
// This will be the an IP of the leader.
// In an IPIP encapsulated mesh it is the leader's private IP.
var gw net.IP
for _, segment := range t.segments {
if segment.location == t.location {
gw = enc.Gw(segment.endpoint.IP, segment.privateIPs[segment.leader], segment.cidrs[segment.leader])
break
}
}
for _, segment := range t.segments {
// First, add a route to the WireGuard IP of the segment.
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: oneAddressCIDR(segment.wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Add routes for the current segment if local is true.
if segment.location == t.location {
if local {
for i := range segment.cidrs {
// Don't add routes for the local node.
if segment.privateIPs[i].Equal(t.privateIP.IP) {
continue
}
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Encapsulate packets from the host's Pod subnet headed
// to private IPs.
if enc.Strategy() == encapsulation.Always || (enc.Strategy() == encapsulation.CrossSubnet && !t.privateIP.Contains(segment.privateIPs[i])) {
routes = append(routes, &netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
})
rules = append(rules, defaultRule(&netlink.Rule{
Src: t.subnet,
Dst: oneAddressCIDR(segment.privateIPs[i]),
Table: kiloTableIndex,
}))
}
}
}
continue
}
for i := range segment.cidrs {
// Add routes to the Pod CIDRs of nodes in other segments.
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Add routes to the private IPs of nodes in other segments.
// Number of CIDRs and private IPs always match so
// we can reuse the loop.
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
}
}
// Add routes for the allowed IPs of peers.
for _, peer := range t.peers {
for i := range peer.AllowedIPs {
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: peer.AllowedIPs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: gw,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
}
}
return routes, rules
}
for _, segment := range t.segments {
// Add routes for the current segment if local is true.
if segment.location == t.location {
if local {
for i := range segment.cidrs {
// Don't add routes for the local node.
if segment.privateIPs[i].Equal(t.privateIP.IP) {
continue
}
routes = append(routes, encapsulateRoute(&netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
}, enc.Strategy(), t.privateIP, tunlIface))
// Encapsulate packets from the host's Pod subnet headed
// to private IPs.
if enc.Strategy() == encapsulation.Always || (enc.Strategy() == encapsulation.CrossSubnet && !t.privateIP.Contains(segment.privateIPs[i])) {
routes = append(routes, &netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.privateIPs[i],
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
})
rules = append(rules, defaultRule(&netlink.Rule{
Src: t.subnet,
Dst: oneAddressCIDR(segment.privateIPs[i]),
Table: kiloTableIndex,
}))
// Also encapsulate packets from the Kilo interface
// headed to private IPs.
rules = append(rules, defaultRule(&netlink.Rule{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Table: kiloTableIndex,
IifName: kiloIfaceName,
}))
}
}
}
continue
}
for i := range segment.cidrs {
// Add routes to the Pod CIDRs of nodes in other segments.
routes = append(routes, &netlink.Route{
Dst: segment.cidrs[i],
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
// Don't add routes through Kilo if the private IP
// equals the external IP. This means that the node
// is only accessible through an external IP and we
// cannot encapsulate traffic to an IP through the IP.
if segment.privateIPs[i].Equal(segment.endpoint.IP) {
continue
}
// Add routes to the private IPs of nodes in other segments.
// Number of CIDRs and private IPs always match so
// we can reuse the loop.
routes = append(routes, &netlink.Route{
Dst: oneAddressCIDR(segment.privateIPs[i]),
Flags: int(netlink.FLAG_ONLINK),
Gw: segment.wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
}
}
// Add routes for the allowed IPs of peers.
for _, peer := range t.peers {
for i := range peer.AllowedIPs {
routes = append(routes, &netlink.Route{
Dst: peer.AllowedIPs[i],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
})
}
}
return routes, rules
}
func encapsulateRoute(route *netlink.Route, encapsulate encapsulation.Strategy, subnet *net.IPNet, tunlIface int) *netlink.Route {
if encapsulate == encapsulation.Always || (encapsulate == encapsulation.CrossSubnet && !subnet.Contains(route.Gw)) {
route.LinkIndex = tunlIface
}
return route
}
// Conf generates a WireGuard configuration file for a given Topology.
func (t *Topology) Conf() *wireguard.Conf {
c := &wireguard.Conf{
@ -438,33 +244,6 @@ func (t *Topology) PeerConf(name string) *wireguard.Conf {
return c
}
// Rules returns the iptables rules required by the local node.
func (t *Topology) Rules(cni bool) []iptables.Rule {
var rules []iptables.Rule
rules = append(rules, iptables.NewIPv4Chain("nat", "KILO-NAT"))
rules = append(rules, iptables.NewIPv6Chain("nat", "KILO-NAT"))
if cni {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(t.subnet.IP)), "nat", "POSTROUTING", "-m", "comment", "--comment", "Kilo: jump to NAT chain", "-s", t.subnet.String(), "-j", "KILO-NAT"))
}
for _, s := range t.segments {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(s.wireGuardIP)), "nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: do not NAT packets destined for WireGuared IPs", "-d", s.wireGuardIP.String(), "-j", "RETURN"))
for _, aip := range s.allowedIPs {
rules = append(rules, iptables.NewRule(iptables.GetProtocol(len(aip.IP)), "nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: do not NAT packets destined for known IPs", "-d", aip.String(), "-j", "RETURN"))
}
}
for _, p := range t.peers {
for _, aip := range p.AllowedIPs {
rules = append(rules,
iptables.NewRule(iptables.GetProtocol(len(aip.IP)), "nat", "POSTROUTING", "-m", "comment", "--comment", "Kilo: jump to NAT chain", "-s", aip.String(), "-j", "KILO-NAT"),
iptables.NewRule(iptables.GetProtocol(len(aip.IP)), "nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: do not NAT packets destined for peers", "-d", aip.String(), "-j", "RETURN"),
)
}
}
rules = append(rules, iptables.NewIPv4Rule("nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: NAT remaining packets", "-j", "MASQUERADE"))
rules = append(rules, iptables.NewIPv6Rule("nat", "KILO-NAT", "-m", "comment", "--comment", "Kilo: NAT remaining packets", "-j", "MASQUERADE"))
return rules
}
// oneAddressCIDR takes an IP address and returns a CIDR
// that contains only that address.
func oneAddressCIDR(ip net.IP) *net.IPNet {
@ -522,12 +301,3 @@ func deduplicatePeerIPs(peers []*Peer) []*Peer {
}
return ps
}
func defaultRule(rule *netlink.Rule) *netlink.Rule {
base := netlink.NewRule()
base.Src = rule.Src
base.Dst = rule.Dst
base.IifName = rule.IifName
base.Table = rule.Table
return base
}

View File

@ -20,10 +20,8 @@ import (
"testing"
"github.com/kylelemons/godebug/pretty"
"github.com/squat/kilo/pkg/encapsulation"
"github.com/squat/kilo/pkg/wireguard"
"github.com/vishvananda/netlink"
"golang.org/x/sys/unix"
)
func allowedIPs(ips ...string) string {
@ -372,832 +370,6 @@ func mustTopo(t *testing.T, nodes map[string]*Node, peers map[string]*Peer, gran
return topo
}
func TestRoutes(t *testing.T) {
nodes, peers, key, port := setup(t)
kiloIface := 0
privIface := 1
tunlIface := 2
mustTopoForGranularityAndHost := func(granularity Granularity, hostname string) *Topology {
return mustTopo(t, nodes, peers, granularity, hostname, port, key, DefaultKiloSubnet, 0)
}
for _, tc := range []struct {
name string
local bool
topology *Topology
strategy encapsulation.Strategy
routes []*netlink.Route
rules []*netlink.Rule
}{
{
name: "logical from a",
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].cidrs[1],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from b",
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from c",
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[0].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[0].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[1].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from a",
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from b",
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from c",
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].cidrs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from a local",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from a local always",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name),
strategy: encapsulation.Always,
routes: []*netlink.Route{
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from b local",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["c"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from b local always",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name),
strategy: encapsulation.Always,
routes: []*netlink.Route{
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(LogicalGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["c"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["c"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
rules: []*netlink.Rule{
defaultRule(&netlink.Rule{
Src: nodes["b"].Subnet,
Dst: nodes["c"].InternalIP,
Table: kiloTableIndex,
}),
defaultRule(&netlink.Rule{
Dst: nodes["c"].InternalIP,
IifName: DefaultKiloInterface,
Table: kiloTableIndex,
}),
},
},
{
name: "logical from c local",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[0].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[1].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: privIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "logical from c local always",
local: true,
topology: mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name),
strategy: encapsulation.Always,
routes: []*netlink.Route{
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[0].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(mustTopoForGranularityAndHost(LogicalGranularity, nodes["c"].Name).segments[1].wireGuardIP),
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["b"].InternalIP,
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
Table: kiloTableIndex,
},
{
Dst: peers["a"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
Flags: int(netlink.FLAG_ONLINK),
Gw: nodes["b"].InternalIP.IP,
LinkIndex: tunlIface,
Protocol: unix.RTPROT_STATIC,
},
},
rules: []*netlink.Rule{
defaultRule(&netlink.Rule{
Src: nodes["c"].Subnet,
Dst: nodes["b"].InternalIP,
Table: kiloTableIndex,
}),
},
},
{
name: "full from a local",
local: true,
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["a"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from b local",
local: true,
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["c"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["c"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["b"].Name).segments[2].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
{
name: "full from c local",
local: true,
topology: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name),
strategy: encapsulation.Never,
routes: []*netlink.Route{
{
Dst: nodes["a"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["a"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[0].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: nodes["b"].Subnet,
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: oneAddressCIDR(nodes["b"].InternalIP.IP),
Flags: int(netlink.FLAG_ONLINK),
Gw: mustTopoForGranularityAndHost(FullGranularity, nodes["c"].Name).segments[1].wireGuardIP,
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["a"].AllowedIPs[1],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
{
Dst: peers["b"].AllowedIPs[0],
LinkIndex: kiloIface,
Protocol: unix.RTPROT_STATIC,
},
},
},
} {
routes, rules := tc.topology.Routes(DefaultKiloInterface, kiloIface, privIface, tunlIface, tc.local, encapsulation.NewIPIP(tc.strategy))
if diff := pretty.Compare(routes, tc.routes); diff != "" {
t.Errorf("test case %q: got diff: %v", tc.name, diff)
}
if diff := pretty.Compare(rules, tc.rules); diff != "" {
t.Errorf("test case %q: got diff: %v", tc.name, diff)
}
}
}
func TestConf(t *testing.T) {
nodes, peers, key, port := setup(t)
for _, tc := range []struct {

View File

@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
package wireguard
import (