Kilo provides a command line tool for inspecting and interacting with clusters: `kgctl`.
This tool can be used to understand a mesh's topology, get the WireGuard configuration for a peer, or graph a cluster.
`kgctl` requires a Kubernetes configuration file to be provided, either by setting the `KUBECONFIG` environment variable or by providing the `--kubeconfig` flag.
The `kgctl` binary is automatically compiled for Linux, macOS, and Windows for every release of Kilo and can be downloaded from [the GitHub releases page](https://github.com/squat/kilo/releases/latest).
### Building from Source
Kilo is written in Golang and as a result the [Go toolchain must be installed](https://golang.org/doc/install) in order to build the `kgctl` binary.
To download the Kilo source code and then build and install `kgctl` using the latest commit all with a single command, run:
```shell
go install github.com/squat/kilo/cmd/kgctl@latest
```
Alternatively, `kgctl` can be built and installed based on specific version of the code by specifying a Git tag or hash, e.g.:
The `connect` command configures the local host as a WireGuard Peer of the cluster and applies all of the necessary networking configuration to connect to the cluster.
As long as the process is running, it will watch the cluster for changes and automatically manage the configuration for new or updated Peers and Nodes.
If the given Peer name does not exist in the cluster, the command will register a new Peer and generate the necessary WireGuard keys.
When the command exits, all of the configuration, including newly registered Peers, is cleaned up.
The local host is now connected to the cluster and all IPs from the cluster and any registered Peers are fully routable.
When combined with the `--clean-up false` flag, the configuration produced by the command is persistent and will remain in effect even after the process is stopped.
With the service CIDR of the cluster routable from the local host, Kubernetes DNS names can now be resolved by the cluster DNS provider.
For example, the following snippet could be used to resolve the clusterIP of the Kubernetes API:
```shell
dig @$(kubectl get service -n kube-system kube-dns -o=jsonpath='{.spec.clusterIP}') kubernetes.default.svc.cluster.local +short
# > 10.43.0.1
```
For convenience, the cluster DNS provider's IP address can be configured as the local host's DNS server, making Kubernetes DNS names easily resolvable.
For example, if using `systemd-resolved`, the following snippet could be used:
```shell
systemd-resolve --interface kilo0 --set-dns $(kubectl get service -n kube-system kube-dns -o=jsonpath='{.spec.clusterIP}') --set-domain cluster.local
# Now all lookups for DNS names ending in `.cluster.local` will be routed over the `kilo0` interface to the cluster DNS provider.
dig kubernetes.default.svc.cluster.local +short
# > 10.43.0.1
```
> **Note**: The `connect` command is currently only supported on Linux.
> **Note**: The `connect` command requires the `CAP_NET_ADMIN` capability in order to configure the host's networking stack; unprivileged users will need to use `sudo` or similar tools.
The `showconf` command outputs the WireGuard configuration for a node or peer in the cluster, i.e. the configuration that the node or peer would need to set on its local WireGuard interface in order to participate in the mesh.
The `--as-peer` flag modifies the behavior of the command so that it outputs the configuration that a different WireGuard interface would need in order to communicate with the specified node or peer.
When further combined with the `--output yaml` flag, this command can be useful to register a node in one cluster as a peer of another cluster, e.g.: