kilo/vendor/honnef.co/go/tools/analysis/code/code.go

343 lines
9.2 KiB
Go
Raw Normal View History

// Package code answers structural and type questions about Go code.
package code
import (
"flag"
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"strings"
"honnef.co/go/tools/analysis/facts"
"honnef.co/go/tools/go/ast/astutil"
"honnef.co/go/tools/go/types/typeutil"
"honnef.co/go/tools/pattern"
"golang.org/x/exp/typeparams"
"golang.org/x/tools/go/analysis"
)
type Positioner interface {
Pos() token.Pos
}
func IsOfType(pass *analysis.Pass, expr ast.Expr, name string) bool {
return typeutil.IsType(pass.TypesInfo.TypeOf(expr), name)
}
func IsInTest(pass *analysis.Pass, node Positioner) bool {
// FIXME(dh): this doesn't work for global variables with
// initializers
f := pass.Fset.File(node.Pos())
return f != nil && strings.HasSuffix(f.Name(), "_test.go")
}
// IsMain reports whether the package being processed is a package
// main.
func IsMain(pass *analysis.Pass) bool {
return pass.Pkg.Name() == "main"
}
// IsMainLike reports whether the package being processed is a
// main-like package. A main-like package is a package that is
// package main, or that is intended to be used by a tool framework
// such as cobra to implement a command.
//
// Note that this function errs on the side of false positives; it may
// return true for packages that aren't main-like. IsMainLike is
// intended for analyses that wish to suppress diagnostics for
// main-like packages to avoid false positives.
func IsMainLike(pass *analysis.Pass) bool {
if pass.Pkg.Name() == "main" {
return true
}
for _, imp := range pass.Pkg.Imports() {
if imp.Path() == "github.com/spf13/cobra" {
return true
}
}
return false
}
func SelectorName(pass *analysis.Pass, expr *ast.SelectorExpr) string {
info := pass.TypesInfo
sel := info.Selections[expr]
if sel == nil {
if x, ok := expr.X.(*ast.Ident); ok {
pkg, ok := info.ObjectOf(x).(*types.PkgName)
if !ok {
// This shouldn't happen
return fmt.Sprintf("%s.%s", x.Name, expr.Sel.Name)
}
return fmt.Sprintf("%s.%s", pkg.Imported().Path(), expr.Sel.Name)
}
panic(fmt.Sprintf("unsupported selector: %v", expr))
}
if v, ok := sel.Obj().(*types.Var); ok && v.IsField() {
return fmt.Sprintf("(%s).%s", typeutil.DereferenceR(sel.Recv()), sel.Obj().Name())
} else {
return fmt.Sprintf("(%s).%s", sel.Recv(), sel.Obj().Name())
}
}
func IsNil(pass *analysis.Pass, expr ast.Expr) bool {
return pass.TypesInfo.Types[expr].IsNil()
}
func BoolConst(pass *analysis.Pass, expr ast.Expr) bool {
val := pass.TypesInfo.ObjectOf(expr.(*ast.Ident)).(*types.Const).Val()
return constant.BoolVal(val)
}
func IsBoolConst(pass *analysis.Pass, expr ast.Expr) bool {
// We explicitly don't support typed bools because more often than
// not, custom bool types are used as binary enums and the
// explicit comparison is desired.
ident, ok := expr.(*ast.Ident)
if !ok {
return false
}
obj := pass.TypesInfo.ObjectOf(ident)
c, ok := obj.(*types.Const)
if !ok {
return false
}
basic, ok := c.Type().(*types.Basic)
if !ok {
return false
}
if basic.Kind() != types.UntypedBool && basic.Kind() != types.Bool {
return false
}
return true
}
func ExprToInt(pass *analysis.Pass, expr ast.Expr) (int64, bool) {
tv := pass.TypesInfo.Types[expr]
if tv.Value == nil {
return 0, false
}
if tv.Value.Kind() != constant.Int {
return 0, false
}
return constant.Int64Val(tv.Value)
}
func ExprToString(pass *analysis.Pass, expr ast.Expr) (string, bool) {
val := pass.TypesInfo.Types[expr].Value
if val == nil {
return "", false
}
if val.Kind() != constant.String {
return "", false
}
return constant.StringVal(val), true
}
func CallName(pass *analysis.Pass, call *ast.CallExpr) string {
fun := astutil.Unparen(call.Fun)
// Instantiating a function cannot return another generic function, so doing this once is enough
switch idx := fun.(type) {
case *ast.IndexExpr:
fun = idx.X
case *typeparams.IndexListExpr:
fun = idx.X
}
// (foo)[T] is not a valid instantiationg, so no need to unparen again.
switch fun := fun.(type) {
case *ast.SelectorExpr:
fn, ok := pass.TypesInfo.ObjectOf(fun.Sel).(*types.Func)
if !ok {
return ""
}
return typeutil.FuncName(fn)
case *ast.Ident:
obj := pass.TypesInfo.ObjectOf(fun)
switch obj := obj.(type) {
case *types.Func:
return typeutil.FuncName(obj)
case *types.Builtin:
return obj.Name()
default:
return ""
}
default:
return ""
}
}
func IsCallTo(pass *analysis.Pass, node ast.Node, name string) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return false
}
return CallName(pass, call) == name
}
func IsCallToAny(pass *analysis.Pass, node ast.Node, names ...string) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return false
}
q := CallName(pass, call)
for _, name := range names {
if q == name {
return true
}
}
return false
}
func File(pass *analysis.Pass, node Positioner) *ast.File {
m := pass.ResultOf[facts.TokenFile].(map[*token.File]*ast.File)
return m[pass.Fset.File(node.Pos())]
}
// IsGenerated reports whether pos is in a generated file, It ignores
// //line directives.
func IsGenerated(pass *analysis.Pass, pos token.Pos) bool {
_, ok := Generator(pass, pos)
return ok
}
// Generator returns the generator that generated the file containing
// pos. It ignores //line directives.
func Generator(pass *analysis.Pass, pos token.Pos) (facts.Generator, bool) {
file := pass.Fset.PositionFor(pos, false).Filename
m := pass.ResultOf[facts.Generated].(map[string]facts.Generator)
g, ok := m[file]
return g, ok
}
// MayHaveSideEffects reports whether expr may have side effects. If
// the purity argument is nil, this function implements a purely
// syntactic check, meaning that any function call may have side
// effects, regardless of the called function's body. Otherwise,
// purity will be consulted to determine the purity of function calls.
func MayHaveSideEffects(pass *analysis.Pass, expr ast.Expr, purity facts.PurityResult) bool {
switch expr := expr.(type) {
case *ast.BadExpr:
return true
case *ast.Ellipsis:
return MayHaveSideEffects(pass, expr.Elt, purity)
case *ast.FuncLit:
// the literal itself cannot have side effects, only calling it
// might, which is handled by CallExpr.
return false
case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
// types cannot have side effects
return false
case *ast.BasicLit:
return false
case *ast.BinaryExpr:
return MayHaveSideEffects(pass, expr.X, purity) || MayHaveSideEffects(pass, expr.Y, purity)
case *ast.CallExpr:
if purity == nil {
return true
}
switch obj := typeutil.Callee(pass.TypesInfo, expr).(type) {
case *types.Func:
if _, ok := purity[obj]; !ok {
return true
}
case *types.Builtin:
switch obj.Name() {
case "len", "cap":
default:
return true
}
default:
return true
}
for _, arg := range expr.Args {
if MayHaveSideEffects(pass, arg, purity) {
return true
}
}
return false
case *ast.CompositeLit:
if MayHaveSideEffects(pass, expr.Type, purity) {
return true
}
for _, elt := range expr.Elts {
if MayHaveSideEffects(pass, elt, purity) {
return true
}
}
return false
case *ast.Ident:
return false
case *ast.IndexExpr:
return MayHaveSideEffects(pass, expr.X, purity) || MayHaveSideEffects(pass, expr.Index, purity)
case *typeparams.IndexListExpr:
// In theory, none of the checks are necessary, as IndexListExpr only involves types. But there is no harm in
// being safe.
if MayHaveSideEffects(pass, expr.X, purity) {
return true
}
for _, idx := range expr.Indices {
if MayHaveSideEffects(pass, idx, purity) {
return true
}
}
return false
case *ast.KeyValueExpr:
return MayHaveSideEffects(pass, expr.Key, purity) || MayHaveSideEffects(pass, expr.Value, purity)
case *ast.SelectorExpr:
return MayHaveSideEffects(pass, expr.X, purity)
case *ast.SliceExpr:
return MayHaveSideEffects(pass, expr.X, purity) ||
MayHaveSideEffects(pass, expr.Low, purity) ||
MayHaveSideEffects(pass, expr.High, purity) ||
MayHaveSideEffects(pass, expr.Max, purity)
case *ast.StarExpr:
return MayHaveSideEffects(pass, expr.X, purity)
case *ast.TypeAssertExpr:
return MayHaveSideEffects(pass, expr.X, purity)
case *ast.UnaryExpr:
if MayHaveSideEffects(pass, expr.X, purity) {
return true
}
return expr.Op == token.ARROW || expr.Op == token.AND
case *ast.ParenExpr:
return MayHaveSideEffects(pass, expr.X, purity)
case nil:
return false
default:
panic(fmt.Sprintf("internal error: unhandled type %T", expr))
}
}
func IsGoVersion(pass *analysis.Pass, minor int) bool {
f, ok := pass.Analyzer.Flags.Lookup("go").Value.(flag.Getter)
if !ok {
panic("requested Go version, but analyzer has no version flag")
}
version := f.Get().(int)
return version >= minor
}
var integerLiteralQ = pattern.MustParse(`(IntegerLiteral tv)`)
func IntegerLiteral(pass *analysis.Pass, node ast.Node) (types.TypeAndValue, bool) {
m, ok := Match(pass, integerLiteralQ, node)
if !ok {
return types.TypeAndValue{}, false
}
return m.State["tv"].(types.TypeAndValue), true
}
func IsIntegerLiteral(pass *analysis.Pass, node ast.Node, value constant.Value) bool {
tv, ok := IntegerLiteral(pass, node)
if !ok {
return false
}
return constant.Compare(tv.Value, token.EQL, value)
}