2021-05-15 10:08:31 +00:00
|
|
|
// Copyright 2019 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package proto
|
|
|
|
|
|
|
|
import (
|
|
|
|
"google.golang.org/protobuf/encoding/protowire"
|
|
|
|
"google.golang.org/protobuf/internal/encoding/messageset"
|
2021-06-14 07:08:46 +00:00
|
|
|
"google.golang.org/protobuf/internal/order"
|
2021-05-15 10:08:31 +00:00
|
|
|
"google.golang.org/protobuf/internal/pragma"
|
|
|
|
"google.golang.org/protobuf/reflect/protoreflect"
|
|
|
|
"google.golang.org/protobuf/runtime/protoiface"
|
|
|
|
)
|
|
|
|
|
|
|
|
// MarshalOptions configures the marshaler.
|
|
|
|
//
|
|
|
|
// Example usage:
|
|
|
|
// b, err := MarshalOptions{Deterministic: true}.Marshal(m)
|
|
|
|
type MarshalOptions struct {
|
|
|
|
pragma.NoUnkeyedLiterals
|
|
|
|
|
|
|
|
// AllowPartial allows messages that have missing required fields to marshal
|
|
|
|
// without returning an error. If AllowPartial is false (the default),
|
|
|
|
// Marshal will return an error if there are any missing required fields.
|
|
|
|
AllowPartial bool
|
|
|
|
|
|
|
|
// Deterministic controls whether the same message will always be
|
|
|
|
// serialized to the same bytes within the same binary.
|
|
|
|
//
|
|
|
|
// Setting this option guarantees that repeated serialization of
|
|
|
|
// the same message will return the same bytes, and that different
|
|
|
|
// processes of the same binary (which may be executing on different
|
|
|
|
// machines) will serialize equal messages to the same bytes.
|
|
|
|
// It has no effect on the resulting size of the encoded message compared
|
|
|
|
// to a non-deterministic marshal.
|
|
|
|
//
|
|
|
|
// Note that the deterministic serialization is NOT canonical across
|
|
|
|
// languages. It is not guaranteed to remain stable over time. It is
|
|
|
|
// unstable across different builds with schema changes due to unknown
|
|
|
|
// fields. Users who need canonical serialization (e.g., persistent
|
|
|
|
// storage in a canonical form, fingerprinting, etc.) must define
|
|
|
|
// their own canonicalization specification and implement their own
|
|
|
|
// serializer rather than relying on this API.
|
|
|
|
//
|
|
|
|
// If deterministic serialization is requested, map entries will be
|
|
|
|
// sorted by keys in lexographical order. This is an implementation
|
|
|
|
// detail and subject to change.
|
|
|
|
Deterministic bool
|
|
|
|
|
|
|
|
// UseCachedSize indicates that the result of a previous Size call
|
|
|
|
// may be reused.
|
|
|
|
//
|
|
|
|
// Setting this option asserts that:
|
|
|
|
//
|
|
|
|
// 1. Size has previously been called on this message with identical
|
|
|
|
// options (except for UseCachedSize itself).
|
|
|
|
//
|
|
|
|
// 2. The message and all its submessages have not changed in any
|
|
|
|
// way since the Size call.
|
|
|
|
//
|
|
|
|
// If either of these invariants is violated,
|
|
|
|
// the results are undefined and may include panics or corrupted output.
|
|
|
|
//
|
|
|
|
// Implementations MAY take this option into account to provide
|
|
|
|
// better performance, but there is no guarantee that they will do so.
|
|
|
|
// There is absolutely no guarantee that Size followed by Marshal with
|
|
|
|
// UseCachedSize set will perform equivalently to Marshal alone.
|
|
|
|
UseCachedSize bool
|
|
|
|
}
|
|
|
|
|
|
|
|
// Marshal returns the wire-format encoding of m.
|
|
|
|
func Marshal(m Message) ([]byte, error) {
|
|
|
|
// Treat nil message interface as an empty message; nothing to output.
|
|
|
|
if m == nil {
|
|
|
|
return nil, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
out, err := MarshalOptions{}.marshal(nil, m.ProtoReflect())
|
|
|
|
if len(out.Buf) == 0 && err == nil {
|
|
|
|
out.Buf = emptyBytesForMessage(m)
|
|
|
|
}
|
|
|
|
return out.Buf, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// Marshal returns the wire-format encoding of m.
|
|
|
|
func (o MarshalOptions) Marshal(m Message) ([]byte, error) {
|
|
|
|
// Treat nil message interface as an empty message; nothing to output.
|
|
|
|
if m == nil {
|
|
|
|
return nil, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
out, err := o.marshal(nil, m.ProtoReflect())
|
|
|
|
if len(out.Buf) == 0 && err == nil {
|
|
|
|
out.Buf = emptyBytesForMessage(m)
|
|
|
|
}
|
|
|
|
return out.Buf, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// emptyBytesForMessage returns a nil buffer if and only if m is invalid,
|
|
|
|
// otherwise it returns a non-nil empty buffer.
|
|
|
|
//
|
|
|
|
// This is to assist the edge-case where user-code does the following:
|
|
|
|
// m1.OptionalBytes, _ = proto.Marshal(m2)
|
|
|
|
// where they expect the proto2 "optional_bytes" field to be populated
|
|
|
|
// if any only if m2 is a valid message.
|
|
|
|
func emptyBytesForMessage(m Message) []byte {
|
|
|
|
if m == nil || !m.ProtoReflect().IsValid() {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return emptyBuf[:]
|
|
|
|
}
|
|
|
|
|
|
|
|
// MarshalAppend appends the wire-format encoding of m to b,
|
|
|
|
// returning the result.
|
|
|
|
func (o MarshalOptions) MarshalAppend(b []byte, m Message) ([]byte, error) {
|
|
|
|
// Treat nil message interface as an empty message; nothing to append.
|
|
|
|
if m == nil {
|
|
|
|
return b, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
out, err := o.marshal(b, m.ProtoReflect())
|
|
|
|
return out.Buf, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// MarshalState returns the wire-format encoding of a message.
|
|
|
|
//
|
|
|
|
// This method permits fine-grained control over the marshaler.
|
|
|
|
// Most users should use Marshal instead.
|
|
|
|
func (o MarshalOptions) MarshalState(in protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
|
|
|
|
return o.marshal(in.Buf, in.Message)
|
|
|
|
}
|
|
|
|
|
|
|
|
// marshal is a centralized function that all marshal operations go through.
|
|
|
|
// For profiling purposes, avoid changing the name of this function or
|
|
|
|
// introducing other code paths for marshal that do not go through this.
|
|
|
|
func (o MarshalOptions) marshal(b []byte, m protoreflect.Message) (out protoiface.MarshalOutput, err error) {
|
|
|
|
allowPartial := o.AllowPartial
|
|
|
|
o.AllowPartial = true
|
|
|
|
if methods := protoMethods(m); methods != nil && methods.Marshal != nil &&
|
|
|
|
!(o.Deterministic && methods.Flags&protoiface.SupportMarshalDeterministic == 0) {
|
|
|
|
in := protoiface.MarshalInput{
|
|
|
|
Message: m,
|
|
|
|
Buf: b,
|
|
|
|
}
|
|
|
|
if o.Deterministic {
|
|
|
|
in.Flags |= protoiface.MarshalDeterministic
|
|
|
|
}
|
|
|
|
if o.UseCachedSize {
|
|
|
|
in.Flags |= protoiface.MarshalUseCachedSize
|
|
|
|
}
|
|
|
|
if methods.Size != nil {
|
|
|
|
sout := methods.Size(protoiface.SizeInput{
|
|
|
|
Message: m,
|
|
|
|
Flags: in.Flags,
|
|
|
|
})
|
|
|
|
if cap(b) < len(b)+sout.Size {
|
|
|
|
in.Buf = make([]byte, len(b), growcap(cap(b), len(b)+sout.Size))
|
|
|
|
copy(in.Buf, b)
|
|
|
|
}
|
|
|
|
in.Flags |= protoiface.MarshalUseCachedSize
|
|
|
|
}
|
|
|
|
out, err = methods.Marshal(in)
|
|
|
|
} else {
|
|
|
|
out.Buf, err = o.marshalMessageSlow(b, m)
|
|
|
|
}
|
|
|
|
if err != nil {
|
|
|
|
return out, err
|
|
|
|
}
|
|
|
|
if allowPartial {
|
|
|
|
return out, nil
|
|
|
|
}
|
|
|
|
return out, checkInitialized(m)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (o MarshalOptions) marshalMessage(b []byte, m protoreflect.Message) ([]byte, error) {
|
|
|
|
out, err := o.marshal(b, m)
|
|
|
|
return out.Buf, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// growcap scales up the capacity of a slice.
|
|
|
|
//
|
|
|
|
// Given a slice with a current capacity of oldcap and a desired
|
|
|
|
// capacity of wantcap, growcap returns a new capacity >= wantcap.
|
|
|
|
//
|
|
|
|
// The algorithm is mostly identical to the one used by append as of Go 1.14.
|
|
|
|
func growcap(oldcap, wantcap int) (newcap int) {
|
|
|
|
if wantcap > oldcap*2 {
|
|
|
|
newcap = wantcap
|
|
|
|
} else if oldcap < 1024 {
|
|
|
|
// The Go 1.14 runtime takes this case when len(s) < 1024,
|
|
|
|
// not when cap(s) < 1024. The difference doesn't seem
|
|
|
|
// significant here.
|
|
|
|
newcap = oldcap * 2
|
|
|
|
} else {
|
|
|
|
newcap = oldcap
|
|
|
|
for 0 < newcap && newcap < wantcap {
|
|
|
|
newcap += newcap / 4
|
|
|
|
}
|
|
|
|
if newcap <= 0 {
|
|
|
|
newcap = wantcap
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return newcap
|
|
|
|
}
|
|
|
|
|
|
|
|
func (o MarshalOptions) marshalMessageSlow(b []byte, m protoreflect.Message) ([]byte, error) {
|
|
|
|
if messageset.IsMessageSet(m.Descriptor()) {
|
|
|
|
return o.marshalMessageSet(b, m)
|
|
|
|
}
|
2021-06-14 07:08:46 +00:00
|
|
|
fieldOrder := order.AnyFieldOrder
|
|
|
|
if o.Deterministic {
|
|
|
|
// TODO: This should use a more natural ordering like NumberFieldOrder,
|
|
|
|
// but doing so breaks golden tests that make invalid assumption about
|
|
|
|
// output stability of this implementation.
|
|
|
|
fieldOrder = order.LegacyFieldOrder
|
|
|
|
}
|
2021-05-15 10:08:31 +00:00
|
|
|
var err error
|
2021-06-14 07:08:46 +00:00
|
|
|
order.RangeFields(m, fieldOrder, func(fd protoreflect.FieldDescriptor, v protoreflect.Value) bool {
|
2021-05-15 10:08:31 +00:00
|
|
|
b, err = o.marshalField(b, fd, v)
|
|
|
|
return err == nil
|
|
|
|
})
|
|
|
|
if err != nil {
|
|
|
|
return b, err
|
|
|
|
}
|
|
|
|
b = append(b, m.GetUnknown()...)
|
|
|
|
return b, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (o MarshalOptions) marshalField(b []byte, fd protoreflect.FieldDescriptor, value protoreflect.Value) ([]byte, error) {
|
|
|
|
switch {
|
|
|
|
case fd.IsList():
|
|
|
|
return o.marshalList(b, fd, value.List())
|
|
|
|
case fd.IsMap():
|
|
|
|
return o.marshalMap(b, fd, value.Map())
|
|
|
|
default:
|
|
|
|
b = protowire.AppendTag(b, fd.Number(), wireTypes[fd.Kind()])
|
|
|
|
return o.marshalSingular(b, fd, value)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (o MarshalOptions) marshalList(b []byte, fd protoreflect.FieldDescriptor, list protoreflect.List) ([]byte, error) {
|
|
|
|
if fd.IsPacked() && list.Len() > 0 {
|
|
|
|
b = protowire.AppendTag(b, fd.Number(), protowire.BytesType)
|
|
|
|
b, pos := appendSpeculativeLength(b)
|
|
|
|
for i, llen := 0, list.Len(); i < llen; i++ {
|
|
|
|
var err error
|
|
|
|
b, err = o.marshalSingular(b, fd, list.Get(i))
|
|
|
|
if err != nil {
|
|
|
|
return b, err
|
|
|
|
}
|
|
|
|
}
|
|
|
|
b = finishSpeculativeLength(b, pos)
|
|
|
|
return b, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
kind := fd.Kind()
|
|
|
|
for i, llen := 0, list.Len(); i < llen; i++ {
|
|
|
|
var err error
|
|
|
|
b = protowire.AppendTag(b, fd.Number(), wireTypes[kind])
|
|
|
|
b, err = o.marshalSingular(b, fd, list.Get(i))
|
|
|
|
if err != nil {
|
|
|
|
return b, err
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return b, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (o MarshalOptions) marshalMap(b []byte, fd protoreflect.FieldDescriptor, mapv protoreflect.Map) ([]byte, error) {
|
|
|
|
keyf := fd.MapKey()
|
|
|
|
valf := fd.MapValue()
|
2021-06-14 07:08:46 +00:00
|
|
|
keyOrder := order.AnyKeyOrder
|
|
|
|
if o.Deterministic {
|
|
|
|
keyOrder = order.GenericKeyOrder
|
|
|
|
}
|
2021-05-15 10:08:31 +00:00
|
|
|
var err error
|
2021-06-14 07:08:46 +00:00
|
|
|
order.RangeEntries(mapv, keyOrder, func(key protoreflect.MapKey, value protoreflect.Value) bool {
|
2021-05-15 10:08:31 +00:00
|
|
|
b = protowire.AppendTag(b, fd.Number(), protowire.BytesType)
|
|
|
|
var pos int
|
|
|
|
b, pos = appendSpeculativeLength(b)
|
|
|
|
|
|
|
|
b, err = o.marshalField(b, keyf, key.Value())
|
|
|
|
if err != nil {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
b, err = o.marshalField(b, valf, value)
|
|
|
|
if err != nil {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
b = finishSpeculativeLength(b, pos)
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
return b, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// When encoding length-prefixed fields, we speculatively set aside some number of bytes
|
|
|
|
// for the length, encode the data, and then encode the length (shifting the data if necessary
|
|
|
|
// to make room).
|
|
|
|
const speculativeLength = 1
|
|
|
|
|
|
|
|
func appendSpeculativeLength(b []byte) ([]byte, int) {
|
|
|
|
pos := len(b)
|
|
|
|
b = append(b, "\x00\x00\x00\x00"[:speculativeLength]...)
|
|
|
|
return b, pos
|
|
|
|
}
|
|
|
|
|
|
|
|
func finishSpeculativeLength(b []byte, pos int) []byte {
|
|
|
|
mlen := len(b) - pos - speculativeLength
|
|
|
|
msiz := protowire.SizeVarint(uint64(mlen))
|
|
|
|
if msiz != speculativeLength {
|
|
|
|
for i := 0; i < msiz-speculativeLength; i++ {
|
|
|
|
b = append(b, 0)
|
|
|
|
}
|
|
|
|
copy(b[pos+msiz:], b[pos+speculativeLength:])
|
|
|
|
b = b[:pos+msiz+mlen]
|
|
|
|
}
|
|
|
|
protowire.AppendVarint(b[:pos], uint64(mlen))
|
|
|
|
return b
|
|
|
|
}
|