diff --git a/tng-computer/custom-wake-model/tng-computer.pb b/tng-computer/custom-wake-model/tng-computer.pb new file mode 100644 index 0000000..c433bcf Binary files /dev/null and b/tng-computer/custom-wake-model/tng-computer.pb differ diff --git a/tng-computer/custom-wake-model/tng-computer.pb.params b/tng-computer/custom-wake-model/tng-computer.pb.params new file mode 100644 index 0000000..7fc5ff4 --- /dev/null +++ b/tng-computer/custom-wake-model/tng-computer.pb.params @@ -0,0 +1 @@ +{"buffer_t": 1.5, "window_t": 0.1, "hop_t": 0.05, "sample_rate": 16000, "sample_depth": 2, "n_fft": 512, "n_filt": 20, "n_mfcc": 13, "use_delta": false, "vectorizer": 2, "threshold_config": [[6, 4]], "threshold_center": 0.2} \ No newline at end of file diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619447272.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619447272.picroft new file mode 100644 index 0000000..05300c9 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619447272.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619447351.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619447351.picroft new file mode 100644 index 0000000..d970350 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619447351.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619447994.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619447994.picroft new file mode 100644 index 0000000..2a06b96 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619447994.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619448330.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619448330.picroft new file mode 100644 index 0000000..da92277 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619448330.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619448499.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619448499.picroft new file mode 100644 index 0000000..7385315 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619448499.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619448653.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619448653.picroft new file mode 100644 index 0000000..5cb5520 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619448653.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449238.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449238.picroft new file mode 100644 index 0000000..713f3a2 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449238.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449266.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449266.picroft new file mode 100644 index 0000000..da1de02 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449266.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449292.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449292.picroft new file mode 100644 index 0000000..9a26187 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449292.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449318.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449318.picroft new file mode 100644 index 0000000..5165fc1 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449318.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449343.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449343.picroft new file mode 100644 index 0000000..65b9f8e Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449343.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449371.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449371.picroft new file mode 100644 index 0000000..4ec12ce Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449371.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449401.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449401.picroft new file mode 100644 index 0000000..951474b Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449401.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449428.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449428.picroft new file mode 100644 index 0000000..d774556 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449428.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449461.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449461.picroft new file mode 100644 index 0000000..ec48ef0 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449461.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449490.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449490.picroft new file mode 100644 index 0000000..207287e Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449490.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449520.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449520.picroft new file mode 100644 index 0000000..9a5e4b3 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449520.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449547.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449547.picroft new file mode 100644 index 0000000..5f6718e Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449547.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449581.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449581.picroft new file mode 100644 index 0000000..f395b5a Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449581.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449614.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449614.picroft new file mode 100644 index 0000000..18833dd Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449614.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449654.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449654.picroft new file mode 100644 index 0000000..30b3159 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449654.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449686.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449686.picroft new file mode 100644 index 0000000..911d4e4 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449686.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449730.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449730.picroft new file mode 100644 index 0000000..423ff45 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449730.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449786.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449786.picroft new file mode 100644 index 0000000..42e9124 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449786.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449832.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449832.picroft new file mode 100644 index 0000000..31f83c6 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449832.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619449875.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619449875.picroft new file mode 100644 index 0000000..b7c086d Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619449875.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619450069.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619450069.picroft new file mode 100644 index 0000000..83e720c Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619450069.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451173.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451173.picroft new file mode 100644 index 0000000..22e0ba6 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451173.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451200.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451200.picroft new file mode 100644 index 0000000..6618e0a Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451200.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451225.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451225.picroft new file mode 100644 index 0000000..860e1ca Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451225.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451250.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451250.picroft new file mode 100644 index 0000000..47cf2b9 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451250.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451275.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451275.picroft new file mode 100644 index 0000000..3b999dc Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451275.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451301.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451301.picroft new file mode 100644 index 0000000..3f8bbd5 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451301.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451325.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451325.picroft new file mode 100644 index 0000000..a638944 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451325.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451351.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451351.picroft new file mode 100644 index 0000000..e3098ef Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451351.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451376.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451376.picroft new file mode 100644 index 0000000..062bc6c Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451376.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451401.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451401.picroft new file mode 100644 index 0000000..82da2c9 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451401.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451429.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451429.picroft new file mode 100644 index 0000000..e8e956f Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451429.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451457.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451457.picroft new file mode 100644 index 0000000..36d7a88 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451457.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451488.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451488.picroft new file mode 100644 index 0000000..8631476 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451488.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619451563.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619451563.picroft new file mode 100644 index 0000000..e9d4950 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619451563.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619452104.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619452104.picroft new file mode 100644 index 0000000..79add52 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619452104.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619452304.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619452304.picroft new file mode 100644 index 0000000..47794f1 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619452304.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619452640.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619452640.picroft new file mode 100644 index 0000000..f28ce9f Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619452640.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619453729.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619453729.picroft new file mode 100644 index 0000000..ffb95bf Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619453729.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619453938.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619453938.picroft new file mode 100644 index 0000000..a017458 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619453938.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619457110.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619457110.picroft new file mode 100644 index 0000000..0f1b868 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619457110.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619457308.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619457308.picroft new file mode 100644 index 0000000..ed58ef4 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619457308.picroft differ diff --git a/tng-computer/tng-computer.logs/events.out.tfevents.1619457560.picroft b/tng-computer/tng-computer.logs/events.out.tfevents.1619457560.picroft new file mode 100644 index 0000000..be93f47 Binary files /dev/null and b/tng-computer/tng-computer.logs/events.out.tfevents.1619457560.picroft differ diff --git a/tng-computer/tng-computer.net b/tng-computer/tng-computer.net new file mode 100644 index 0000000..01c5fac Binary files /dev/null and b/tng-computer/tng-computer.net differ diff --git a/tng-computer/tng-computer.net.params b/tng-computer/tng-computer.net.params new file mode 100644 index 0000000..7fc5ff4 --- /dev/null +++ b/tng-computer/tng-computer.net.params @@ -0,0 +1 @@ +{"buffer_t": 1.5, "window_t": 0.1, "hop_t": 0.05, "sample_rate": 16000, "sample_depth": 2, "n_fft": 512, "n_filt": 20, "n_mfcc": 13, "use_delta": false, "vectorizer": 2, "threshold_config": [[6, 4]], "threshold_center": 0.2} \ No newline at end of file diff --git a/tng-computer/tng-computer.pbtxt b/tng-computer/tng-computer.pbtxt new file mode 100644 index 0000000..62c84f0 --- /dev/null +++ b/tng-computer/tng-computer.pbtxt @@ -0,0 +1,28181 @@ +node { + name: "net_input" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: -1 + } + dim { + size: 29 + } + dim { + size: 13 + } + } + } + } +} +node { + name: "net/random_uniform/shape" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\r\000\000\000<\000\000\000" + } + } + } +} +node { + name: "net/random_uniform/min" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: -0.2866910994052887 + } + } + } +} +node { + name: "net/random_uniform/max" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.2866910994052887 + } + } + } +} +node { + name: "net/random_uniform/RandomUniform" + op: "RandomUniform" + input: "net/random_uniform/shape" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "seed" + value { + i: 87654321 + } + } + attr { + key: "seed2" + value { + i: 8388397 + } + } +} +node { + name: "net/random_uniform/sub" + op: "Sub" + input: "net/random_uniform/max" + input: "net/random_uniform/min" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/random_uniform/mul" + op: "Mul" + input: "net/random_uniform/RandomUniform" + input: "net/random_uniform/sub" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/random_uniform" + op: "Add" + input: "net/random_uniform/mul" + input: "net/random_uniform/min" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/kernel" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 13 + } + dim { + size: 60 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "net/kernel/Assign" + op: "Assign" + input: "net/kernel" + input: "net/random_uniform" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/kernel" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "net/kernel/read" + op: "Identity" + input: "net/kernel" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/kernel" + } + } + } +} +node { + name: "net/recurrent_kernel/initial_value" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 20 + } + dim { + size: 60 + } + } + tensor_content: "\201\014^\275\343z\312\275\200\343\231=;\331P=\373\266\017\2766\257)>\314\344\035>P\325\207\276\366\263\234S\366\2757\213A=$\266 >\255(\254=?,\013>\017\2429<&\254\026\276\035R\360\274\"\"\335=\350I\215=\254\202\204\276\301\223\205\273\216:S=C&\335;\275-\354\275\345\222\360=!\204M\275|\027\007\275K?:;\360\274\300=e\010\245<\214[\254\276?e\002\273u\242D=!;\272\274K\301\340=\27266>3\366\270>\250\240&\274`\263\351=\017\217\260=\266\227\347=P\245\356\275=W\010>\302\372\360\275`\332\214\276Q\'\277<\220`\201\276\305=a\276\006\026\305=\025UG\275\025b:\274\356bU\275\225l\017=\347U\213>\254\206.=\037:\234=:bi>W}$>\337B\312\275V*\303=d\n\211;;\275\006;,~\024\276\222\215\234>\265g\334\275x])=\373\332\353=\265#\033\2718/\275c3\202\275S\267-\275\337\366\247=\022\216\204=\244\2348>\027\216\t=\226\373\\>\270\215\202<\003\320\371;9e\342=\230\200\023>\321\332\366\275\372\204g\276Z\001_>\227\272\246\273\177/\347\274\252\374\205\276\225\341B=\255\221\010<\253\0073\276J\251\031>\3206b\275\001\365\345\275\265O\215\276-9@>{f\267=-\267\357=\214\321\316\274ef\344\275\311\200A=\022\365\242\275\030)c\276/_\214=\376o\357\343\024*=\"V\250=\335\204\002=\314\357S=\320\241\264=\201\\v=\253\2232=PfE\276\364Tt\273]\247\277\275K]i\275B\352u\274@g!\276o\2064\275X\367\202\275a\305\323\275\256A(>\006OR\276\273k:\274Q\036\322\274/R\021={\023u\276\361\031!>K\226\r\275\032)\223\274M\261\256\275UI\260=\r\207\200=\006qE>\2070\343=T\030\231\274A-[>=\362\000\275\366=J\276_M\005>#\371D>u\205u\274\203;\261\274*\201\265<\207 (\276\021\177\333=x\244\355=aE\025>\377\252\211\275\215\236\251\274\245\034\024>\272\034\231\275\361{*\276\177p\224=\376\372\022>\373X\t>t7\256=\2153*\275#\354\213\276\203~v\275\241\340\256\275\207\360\326\275\257\222\257>\310\334\224>bt\227>\025\017h\274\263@/>8;\032\276\003\223\313\275Q_k=t \203\275]\013\207=l\236\267=\202\3409\275B\307i>\210\302\314=v0\010\276,\363\333\2754\361\266\275\006\223\333<\023\255\013=\323?\356\275i\241\315<\224\007=>N\177\356\274>-\201\274X\0045>=U\n\276\237\366}\276q=}\275\270\331W\2766z\200\275\005\323s\276\376\373\337\275\213\250P>\231G(\276 \301\027\2763\243\256\275\240\017\n=\225 \014\275\311\330\002>\006V|\274\027~\034>\017d\t\276e\013U\275\227\236\202\276^4\334=T\201\355\275T}9\276\352:D\276\312i\032\275\377\035\210\275\247\233\346=\337NP\274z\364b:\375\371\004<\013L\020\276ip\022\276*a\234\360\306j=\376S\032>\313\036\265\275\231vV\275QM\007=\202)\'\276\207\226\275\275<\017\001>\256>\335\275*\316\035\275\375\223Z\276\364b/=\027\343\302\2759\306o\275\302l>\275K\272\233=\202\0132\276\003Ir\276\250\020\035=\3657R\275\"9\316\274-\222\227=B\211\010\275+\356\034\275\272d\250=P\t\t>Yb\314=<\210B\276\210m=\275l\'.\276\245\240i>\205\035c=1\033\326=t\2307\276\275\010\235\275\355\351\277\275S\271\334=\024i\217\276p?\234\274\210\226W>\217\331E\2765\221\257\273*+\021<\022\222\241\276\345S\262=5&J=\245\336G=\316R\026\275?\030\010\276M\\\025>\t]\033\276gHF>\343\032\026>~\333r\273g\256/\276\256\003\317\275\247\005\0008\301\317&>\350w\311=\226TE\276\233\n\247\274\322\244\213<_\237\r=\004\367K=\002\020\206=w\375\261!>\004\276\305\177\221=\014\322\351=\220c\376=\232\367\026>\024\r\032\275:\337\222=fc\271\275>\365\317\275\213x\036=\273(\314=\327\241\004\276\r\207\275\275\257[\312\276Q\360\334\275\315\266_>1Cj\276\330\2716\276\323,\345=\026\252\263=Vu \276<\376\216=\327\214\201\275\274\231\276\273\2436|\275\013\242\201=\235LA\276\223.\377:\321p\252\275E\235\242>\034*\032\276\006\t\002\274@\213\022\276\361\t\222\275\316\215\031\2761\205h\276Rs\257\273-\344S=34\270;\207+\370=\213%F\276\\?\300<\320T\265\275\241 \261\262\277\202\274\r\027\000\276nq@>\254\322\227=\277\316\374=\244j\216\274)\350\025\275\312T\225\014\300\031\275w\245g3 \023<\227\270\235=\3458%=\023\'\270\275\225\177\220\274i\213\356=\207\003b\275K>\321=s\317\255=p\302\027>\244\251\036\276\213J\217=i/\300\275\265^\314\274K\031\202>N)^=^\214^>\362*T>\345\221p\001\352c\276\271B\224=\256{\030=\253S\314\275\316\007\246\276\254\036T=0\205|=I\211\">TF\301\274)F0\275\311\250\036>\352\036\232>\006\254\222\274l\254\246={e\216\273\206\254\346\274\233.\305\275\331)-\276\013\304\022>[\\\367=\2004Y\2745\030r\274V}$\276\325\340\003>\372\245h\275\336B\215\275T\204\350\275r=\233\274\276\203\033=\017\233\027=\220\244G\275\n\326\215=\013\255\327=\242tz\275\377I\242\27669s\276\037\332%\276\327\355\364\274\177\217$>\032\010\221\275\266h\372\275z\227\032\276\007\347H=\341\230\365\275{\010,:\325i\225<\r\303\244>\"\240\344<\251A\246;fU\232\275\254\212\033<\300\216\300\275\003\200\205\275\316M|\275\324\321\356=\023\022\031>\271\177\010\276\237\261\315=\332\270\256\275\320X\326=\354!w\276\355d\255\276^\245\324\275~t\300<\345\036\264<\036\311\027>3\302\033>4\212;\274\'\210\216=n\235\032\276<\0221=\237\226m=\301\304><9{\336=\225\3549\276\023\347\267\274\342\311\316=[\341\001\276\347x\373\2753\362\313\275\220\004\242\275V\n\220=63\236>\024\355\301\275\020\020\036>i\235\257\274\337w.>\037\220\t\275`S\343d\350*\275t4\\=UU\260\275\200!\353\274\325\376:>\302;\177\276IS\376\245\275&\177\027\273+\316\212>\315\301z\276\305a\035>R)\324\274L\032h=FX\230\274\261\330\376\275\352;\350<\300\317\321\275\006\300\207>x\323]\273\231\325\000>\251\337\233=\001\373\376\275XsG;Ce\252=\025\350\325=\356\376,>,\3233>sz\340=q;\241\274w\354\221\275:\037\356\275\020\330\246;\310\023\301\274%\032\255\251\231\251\275[O\000>\345\367\340\271}\356\304\276gz\215=\210\3540>s\300L\276\217\215\214=\203\036\225>!`\224\276\3176\263=A\375\210\274\345q\202<\213\365\334<\030\372\202>\371;/>O\230R=\371\344\301=O\310\300\275\24210=\001\377\325<\214\267\362\275\373\276\022=P1\317=\206\330O\275_\333\324\275\252]\336\274\356\300P=\tf\002>\211y\203=\213\246\005\276$\262z=\230\314\217=\250\344\220\275\242\274V>d\235\010=\027\341\t>VA\030\276!\032>\275\324o\361=\324\2112\275~\263\252\276\330\373\307\2755*\303\273\323\275\376=\351\302\335\272Z\006o\276\310\"M\276\034\020\211>[\317\222\275\253\373\301\274\270\324\312=\013\033j=\237\376\317=\322\034B<\305@@=\036\262\026\276\213\367\001>\237\266\353\275\r\032\354=\027\223\321\274\'\235\t\275}$\026>\026\342\254=\2213\276=\202\311\004>0\037P=i\215\347\275\237i\261\275Q&\036<\241\217)\276\000\030)\276n/&=H\275\007<\341\355t<$)[<\202\177\243>Q\341\017>xIm>W\263?\276\236\220\'\275,\n\236\274\375e\361=\253\300\254\275\226\026\005\276\372?F\275u/\343\275\355\363I=-\363\245=\023\354\202\275\267\331\006>l\324->O\304\211\275\017\374\320;\356.\r\276A+\225\2751\315\257<\341\203\'>l\304\304\272yo\330\275\327\373\245=\353\327\217=\331K\201=d\352\312\275\365c^=z,\246\275dI\256\275z\332\'=Ykv>\016\"\227\276E\355\200\275Y\276\225\274J\025\276=)}\025\276\214\241R\2761?\210\276\312/\332=\362\304B\276\365\2347\276@\213\345=\203D\207=\224o\305;\237w\026>~Pb>[\027\016>\224M\036\276\312\330G\2752\327\255\275\324\212\t>\231*\201\276\306\025\243\274,b\020\276\31383\274q\332\010>\021\357I\275Y\257\210\275B\017+>\035\264G\276&\307u=\207\224 =L{\317\275\333L\246=x\212B\276\202+\365\275he,=T@e=\036\325\313\275\307\023\244<\347v\227=<0\035=\025\342\032>\264\256\272\276\341\256\256<(\371s\276\262Q\253\275\375\237J\274-\230X=\345\355A\276gk\350==\332R=G\300\n=\216Q\355\275{\020\177\275._\r\276WJ\016\276\201\353\270=\370\205\t>\225|\256\275\342\214\201\275\035\017\300\275}\323\203\276\020j\356\275h\202S\275m\301\021\275\240\216z=\232\005$\276\263uE\276D\230T\276\323\023\000=\'5I\275\204r_\276V\265a=\237\034&\276={\276=A\010I),|=\372\345@=\275\363\223<;]%\274[\340q>\037\314\224\275\223jB>X\377#>\357ro>C\323\">\205\007W=YO\023=\246Q\375=3\322\031>4\001\244\275\250q=>\314\357\254\275\311?~=\351\263\016<\201\212->\252g\202\274\2760\355=\"\204\204=B\230a\276\230\237\221;\310X\216=\356d\230<\031R\257<\377\264\332=\n\277\222=\023\177Y\275\303\226\230\275\027\213L\276\211\221H=\323G\016=\333>\244;O\3025>\322S\316\275>\320\307\275\241ux\275\260\277\212<\310h3\275\257\246\351<\241\366j=\260\326\234>\214\226^>?Q\215>\236s\264\276{L$\275\023q\352\275\246\334\204>?\254V\274\036\234\020\275\275V\266\275\223\367~=%\r\243\226\t\262;\2069\306=\227`7>m\346~>\330\232\241\274\326\326\223\276\333\251\313=\212\236n\275\316R\006>a*s=\256\263\t>\354S\243\276\202o0>\344\234\341\274#\224\013\276\203\277\225=\276\363\220;#\310\374\275\220\352%<\263\327\223\275IUR=\021\244S;\t\351\213>ND\217=\324\344\003\276s\363\274\275\202[\022\276\276\200\205=\\\360\313\275\010!\027\275b\344Wz\357\t>\371\t\323\275\231\002\275\275d=5\273/\216\355\275m\351\314<\203y\004\276\220\212\026\276l\037\'>+\001\207\276S\366\223!;V<\306\277\353\275\007\313\237=\000\326\022\275\302]\'\276bOG\276\033\246\300\275f\323Z=\360\303\215\275.,)>\276Rj>q\276&>\346\t\201\275\232\307u<9x\201\275f\245\306\275\246\313*\273\003\377)>g\366\005\276\362\002\263=H\243U\276\026\313\321\274\t\257\222=\320v\214\275x\023Y>U\'\033\276Z~T>Zm!>b\275\322\275\304\020i\275\306\211>\276\344\3621\275\343\224E\276P\264\314;1\2735>\276\345\225>B\357\212\275`\361=\275\347r\356\275HE\222=6|n\275\024[\320=\300\342x\276\333\241_\276s\255\236<\312\220\373\275\014\324\361\274\335IO>k@[>+n\222=,5\316=\312d\020> %=>\315\340.<\337\327&=\342\365\226\273\302A\356\275Bd\362=c\r\n\275\023^\010\275\017\221\374\274\363\206\013<\220\241\000>\347`)\275\274\001A\275\265z\356=\327^6\276\220\005\337<\326\353\345\275\037/\312=\273u\372\275\0241\210\275\267\204\256\273\341\265\030\275\362\2513=\202i\322\275\372\316!\275vm#\276r\265\273\273c\270@\275\337^9\276c\375*>\345H\366\275\321sl\275&\252\246\275\260Kk=A\226\200=\211&\033>\244\312+>43\357=\253>9>;\"\251=\235xH\276\272h\353\274Q\260\036\275\277Z\350=\220\343\'>\320\306\246=>\303E\274=!:=r\301\244>\247\310S>\307\343\250\275\345J\225\276\375A\233\275\354\240\305\275.\014\355=\315h\314\275\201\374\270\275\\\023j\274\325v{\276lzN\275\317\177\027\276|\301\026\2765\320\302<\343e\240\275E\177]\275z\322\227=\022\234_>\230\027}\2766\351\317=\372C%\276>\010#\273/\251s\276q\271\325=q\317\217\274\301\210\357\274\242\212\020\276\353\003\'\275\022\006\036=\366;\352\274\365\233\220\276\002\346\217<\333fO>\251L\260\275\267\032\313\274\310\242\353=\244\020\222\274\\K\250\275:\2653\276\321\365\314=L\236\\\276\026\037\243\274Ns\234>\330A\261=\003\313#>-O\203\276\017\353V>\346\357n\276\0136\217\275\t\007k\273\240\257\335<\242%\264=\217!\204\275B\"\016>\'s\201\275W\232/\275\275B\031=\264\010\026\275Ap\346\275\333\334&\275/\274W>\355\206{\276\035$\332\275\263\362F\275\335H\236=6\315?>?\226\303=\217\314D=\232\221\t\273\201^W\276\363\232\314\275}\255O>\225/<\276\"X\265\275\266!\002\275\361\202\364=g\340\021=Q\364\001\2764\311\211\274_\332\317=\362X5\274\023\2302\275\235b\244\274\320\243&\276\004\246X=;\346\343<|\312\026\275\211\320\">9\301m\276\311u&>\352\346p>(5\332\274\210W\027=H\026\224=\331\365$>\302\246O=-W\343<\372\351r\275\345H\035>#.^\276\323\242i\274\256\304\001\275\022a\311=\326\003\263=\206(K\275T\014L\276bO$\274\231\214\217\2758$F;\373\377V>f\357#>N\243\273=s\271\240>\355\004\2432\324\004\276-\024\230<7i5\275\237\000I\276\306)]\275y\363\007>\027\214\207=T@`>}\267\260\275`\034\371<\220\022\335:\375\331\263:\336\\5=\231\220\346\275\376\035\304;\255\316D\276\261\312\220=\010gA\276\340Uo>8\251\356\274|+\262<#G\371=\007\356\306\275OS\307<\177\264*>\r\303X>\005\367\220\276-\254l\275\237\373\223=f\203\272=\037cc\275\303S\244=I\254F>9\260\002>\010j\002\276\253\351\272\276\307_C\275s\002c\276+\371\320<\357\330\211\275\007\026\305<7\312L=\354\3121\276\242\324\236>?Q\313=\021\261\222\275\343\r\t\274\263P\203\275K\236\311=Vv\214=s3\247\275\003Z\031>\201\263\351\275\350\344R\276:\177\312;\256.\034\276\265\265j\276\302{6\276\275V\351\275E\2739\276\366\263\326\275\367MD>7\002\030=\020y\017=N\2119<*\342N:\001\347\243\275\016\3345>\325\214\263>\017\013>9\202N=,\350\266\275\021i\350\275\345\004\013\276\311\257\020=&\213S=t6M>\370g\367\275\200_\207\275\376\033*\276]\036\234\274*\006\360\273D\212\243=\262M\315\275U\025\332=N}\215>,\237Z<\346\353#\276\035M\004>\036\263\342\275a\\*>\352\254\270\275\213\030\255\275\r\242f= \317\014\276\203\227\013\276\027\215\241>7\245\312=\352\324k\275V\247<\276=J\223\275\340\200\247>h\360\361=f\375\001=1\330\245\274p\211*>\0304\'=\354\030$=\227\240\233\275\300\340\272\275\303\230\014\276\203\034\222\275\263\205\033>\211\226E=r\262;>\320\300n>\205\"\017\276\355\331\021>\322\232\010>q\\^>\"\213\326\274\336\232\005\276\266\257?w\337\210\274M\320\376\275*h\234<\363\361\342\275b\305>\276\227\221\343=w\347\246=\362pw=\332s<=\037 \264<" + } + } + } +} +node { + name: "net/recurrent_kernel" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 20 + } + dim { + size: 60 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "net/recurrent_kernel/Assign" + op: "Assign" + input: "net/recurrent_kernel" + input: "net/recurrent_kernel/initial_value" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/recurrent_kernel" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "net/recurrent_kernel/read" + op: "Identity" + input: "net/recurrent_kernel" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/recurrent_kernel" + } + } + } +} +node { + name: "net/Const" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 60 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "net/bias" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 60 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "net/bias/Assign" + op: "Assign" + input: "net/bias" + input: "net/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/bias" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "net/bias/read" + op: "Identity" + input: "net/bias" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/bias" + } + } + } +} +node { + name: "net/strided_slice/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\000\000\000\000" + } + } + } +} +node { + name: "net/strided_slice/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\024\000\000\000" + } + } + } +} +node { + name: "net/strided_slice/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "net/strided_slice" + op: "StridedSlice" + input: "net/kernel/read" + input: "net/strided_slice/stack" + input: "net/strided_slice/stack_1" + input: "net/strided_slice/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 3 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "net/strided_slice_1/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\000\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_1/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\024\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_1/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_1" + op: "StridedSlice" + input: "net/recurrent_kernel/read" + input: "net/strided_slice_1/stack" + input: "net/strided_slice_1/stack_1" + input: "net/strided_slice_1/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 3 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "net/strided_slice_2/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\024\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_2/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000(\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_2/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_2" + op: "StridedSlice" + input: "net/kernel/read" + input: "net/strided_slice_2/stack" + input: "net/strided_slice_2/stack_1" + input: "net/strided_slice_2/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "net/strided_slice_3/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\024\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_3/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000(\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_3/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_3" + op: "StridedSlice" + input: "net/recurrent_kernel/read" + input: "net/strided_slice_3/stack" + input: "net/strided_slice_3/stack_1" + input: "net/strided_slice_3/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "net/strided_slice_4/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000(\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_4/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\000\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_4/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_4" + op: "StridedSlice" + input: "net/kernel/read" + input: "net/strided_slice_4/stack" + input: "net/strided_slice_4/stack_1" + input: "net/strided_slice_4/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 3 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "net/strided_slice_5/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000(\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_5/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\000\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_5/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "net/strided_slice_5" + op: "StridedSlice" + input: "net/recurrent_kernel/read" + input: "net/strided_slice_5/stack" + input: "net/strided_slice_5/stack_1" + input: "net/strided_slice_5/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 3 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "net/strided_slice_6/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "net/strided_slice_6/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 20 + } + } + } +} +node { + name: "net/strided_slice_6/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_6" + op: "StridedSlice" + input: "net/bias/read" + input: "net/strided_slice_6/stack" + input: "net/strided_slice_6/stack_1" + input: "net/strided_slice_6/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 0 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "net/strided_slice_7/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 20 + } + } + } +} +node { + name: "net/strided_slice_7/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 40 + } + } + } +} +node { + name: "net/strided_slice_7/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_7" + op: "StridedSlice" + input: "net/bias/read" + input: "net/strided_slice_7/stack" + input: "net/strided_slice_7/stack_1" + input: "net/strided_slice_7/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 0 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 0 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "net/strided_slice_8/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 40 + } + } + } +} +node { + name: "net/strided_slice_8/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "net/strided_slice_8/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_8" + op: "StridedSlice" + input: "net/bias/read" + input: "net/strided_slice_8/stack" + input: "net/strided_slice_8/stack_1" + input: "net/strided_slice_8/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 0 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "net/zeros_like" + op: "ZerosLike" + input: "net_input" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/Sum/reduction_indices" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\002\000\000\000" + } + } + } +} +node { + name: "net/Sum" + op: "Sum" + input: "net/zeros_like" + input: "net/Sum/reduction_indices" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "net/ExpandDims/dim" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "net/ExpandDims" + op: "ExpandDims" + input: "net/Sum" + input: "net/ExpandDims/dim" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tdim" + value { + type: DT_INT32 + } + } +} +node { + name: "net/Tile/multiples" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\024\000\000\000" + } + } + } +} +node { + name: "net/Tile" + op: "Tile" + input: "net/ExpandDims" + input: "net/Tile/multiples" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tmultiples" + value { + type: DT_INT32 + } + } +} +node { + name: "net/transpose/perm" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 3 + } + } + tensor_content: "\001\000\000\000\000\000\000\000\002\000\000\000" + } + } + } +} +node { + name: "net/transpose" + op: "Transpose" + input: "net_input" + input: "net/transpose/perm" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tperm" + value { + type: DT_INT32 + } + } +} +node { + name: "net/Shape" + op: "Shape" + input: "net/transpose" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "net/strided_slice_9/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "net/strided_slice_9/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_9/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_9" + op: "StridedSlice" + input: "net/Shape" + input: "net/strided_slice_9/stack" + input: "net/strided_slice_9/stack_1" + input: "net/strided_slice_9/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "begin_mask" + value { + i: 0 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 0 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 1 + } + } +} +node { + name: "net/strided_slice_10/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "net/strided_slice_10/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_10/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_10" + op: "StridedSlice" + input: "net/transpose" + input: "net/strided_slice_10/stack" + input: "net/strided_slice_10/stack_1" + input: "net/strided_slice_10/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "begin_mask" + value { + i: 0 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 0 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 1 + } + } +} +node { + name: "net/Shape_1" + op: "Shape" + input: "net/strided_slice_10" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "net/strided_slice_11/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: -1 + } + } + } +} +node { + name: "net/strided_slice_11/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "net/strided_slice_11/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_11" + op: "StridedSlice" + input: "net/Shape_1" + input: "net/strided_slice_11/stack" + input: "net/strided_slice_11/stack_1" + input: "net/strided_slice_11/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "begin_mask" + value { + i: 0 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 0 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 1 + } + } +} +node { + name: "net/Shape_2" + op: "Shape" + input: "net/strided_slice_10" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "net/strided_slice_12/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "net/strided_slice_12/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_12/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/strided_slice_12" + op: "StridedSlice" + input: "net/Shape_2" + input: "net/strided_slice_12/stack" + input: "net/strided_slice_12/stack_1" + input: "net/strided_slice_12/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "begin_mask" + value { + i: 0 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 0 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 1 + } + } +} +node { + name: "net/ones/mul" + op: "Mul" + input: "net/strided_slice_12" + input: "net/strided_slice_11" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "net/ones/Less/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1000 + } + } + } +} +node { + name: "net/ones/Less" + op: "Less" + input: "net/ones/mul" + input: "net/ones/Less/y" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "net/ones/packed" + op: "Pack" + input: "net/strided_slice_12" + input: "net/strided_slice_11" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "axis" + value { + i: 0 + } + } +} +node { + name: "net/ones/Const" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "net/ones" + op: "Fill" + input: "net/ones/packed" + input: "net/ones/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "index_type" + value { + type: DT_INT32 + } + } +} +node { + name: "net/mul" + op: "Mul" + input: "net/strided_slice_10" + input: "net/ones" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/mul_1" + op: "Mul" + input: "net/strided_slice_10" + input: "net/ones" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/mul_2" + op: "Mul" + input: "net/strided_slice_10" + input: "net/ones" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/MatMul" + op: "MatMul" + input: "net/mul" + input: "net/strided_slice" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/MatMul_1" + op: "MatMul" + input: "net/mul_1" + input: "net/strided_slice_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/MatMul_2" + op: "MatMul" + input: "net/mul_2" + input: "net/strided_slice_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/BiasAdd" + op: "BiasAdd" + input: "net/MatMul" + input: "net/strided_slice_6" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "net/BiasAdd_1" + op: "BiasAdd" + input: "net/MatMul_1" + input: "net/strided_slice_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "net/BiasAdd_2" + op: "BiasAdd" + input: "net/MatMul_2" + input: "net/strided_slice_8" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "net/MatMul_3" + op: "MatMul" + input: "net/Tile" + input: "net/strided_slice_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/MatMul_4" + op: "MatMul" + input: "net/Tile" + input: "net/strided_slice_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/add" + op: "Add" + input: "net/BiasAdd" + input: "net/MatMul_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/mul_3/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.20000000298023224 + } + } + } +} +node { + name: "net/mul_3" + op: "Mul" + input: "net/mul_3/x" + input: "net/add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/add_1/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.5 + } + } + } +} +node { + name: "net/add_1" + op: "Add" + input: "net/mul_3" + input: "net/add_1/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/Const_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "net/Const_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "net/clip_by_value/Minimum" + op: "Minimum" + input: "net/add_1" + input: "net/Const_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/clip_by_value" + op: "Maximum" + input: "net/clip_by_value/Minimum" + input: "net/Const_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/add_2" + op: "Add" + input: "net/BiasAdd_1" + input: "net/MatMul_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/mul_4/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.20000000298023224 + } + } + } +} +node { + name: "net/mul_4" + op: "Mul" + input: "net/mul_4/x" + input: "net/add_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/add_3/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.5 + } + } + } +} +node { + name: "net/add_3" + op: "Add" + input: "net/mul_4" + input: "net/add_3/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/Const_3" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "net/Const_4" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "net/clip_by_value_1/Minimum" + op: "Minimum" + input: "net/add_3" + input: "net/Const_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/clip_by_value_1" + op: "Maximum" + input: "net/clip_by_value_1/Minimum" + input: "net/Const_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/mul_5" + op: "Mul" + input: "net/clip_by_value_1" + input: "net/Tile" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/MatMul_5" + op: "MatMul" + input: "net/mul_5" + input: "net/strided_slice_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/add_4" + op: "Add" + input: "net/BiasAdd_2" + input: "net/MatMul_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/mul_6" + op: "Mul" + input: "net/clip_by_value" + input: "net/Tile" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/sub/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "net/sub" + op: "Sub" + input: "net/sub/x" + input: "net/clip_by_value" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/mul_7" + op: "Mul" + input: "net/sub" + input: "net/add_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/add_5" + op: "Add" + input: "net/mul_6" + input: "net/mul_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/TensorArray" + op: "TensorArrayV3" + input: "net/strided_slice_9" + attr { + key: "clear_after_read" + value { + b: true + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "dynamic_size" + value { + b: false + } + } + attr { + key: "element_shape" + value { + shape { + unknown_rank: true + } + } + } + attr { + key: "identical_element_shapes" + value { + b: true + } + } + attr { + key: "tensor_array_name" + value { + s: "output_ta" + } + } +} +node { + name: "net/TensorArray_1" + op: "TensorArrayV3" + input: "net/strided_slice_9" + attr { + key: "clear_after_read" + value { + b: true + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "dynamic_size" + value { + b: false + } + } + attr { + key: "element_shape" + value { + shape { + unknown_rank: true + } + } + } + attr { + key: "identical_element_shapes" + value { + b: true + } + } + attr { + key: "tensor_array_name" + value { + s: "input_ta" + } + } +} +node { + name: "net/TensorArrayUnstack/Shape" + op: "Shape" + input: "net/transpose" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "net/TensorArrayUnstack/strided_slice/stack" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "net/TensorArrayUnstack/strided_slice/stack_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/TensorArrayUnstack/strided_slice/stack_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "net/TensorArrayUnstack/strided_slice" + op: "StridedSlice" + input: "net/TensorArrayUnstack/Shape" + input: "net/TensorArrayUnstack/strided_slice/stack" + input: "net/TensorArrayUnstack/strided_slice/stack_1" + input: "net/TensorArrayUnstack/strided_slice/stack_2" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "begin_mask" + value { + i: 0 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 0 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 1 + } + } +} +node { + name: "net/TensorArrayUnstack/range/start" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 0 + } + } + } +} +node { + name: "net/TensorArrayUnstack/range/delta" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "net/TensorArrayUnstack/range" + op: "Range" + input: "net/TensorArrayUnstack/range/start" + input: "net/TensorArrayUnstack/strided_slice" + input: "net/TensorArrayUnstack/range/delta" + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } +} +node { + name: "net/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3" + op: "TensorArrayScatterV3" + input: "net/TensorArray_1" + input: "net/TensorArrayUnstack/range" + input: "net/transpose" + input: "net/TensorArray_1:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/transpose" + } + } + } +} +node { + name: "net/time" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 0 + } + } + } +} +node { + name: "net/while/Enter" + op: "Enter" + input: "net/time" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/Enter_1" + op: "Enter" + input: "net/TensorArray:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/Enter_2" + op: "Enter" + input: "net/Tile" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/Merge" + op: "Merge" + input: "net/while/Enter" + input: "net/while/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "net/while/Merge_1" + op: "Merge" + input: "net/while/Enter_1" + input: "net/while/NextIteration_1" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/Merge_2" + op: "Merge" + input: "net/while/Enter_2" + input: "net/while/NextIteration_2" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/Less" + op: "Less" + input: "net/while/Merge" + input: "net/while/Less/Enter" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "net/while/Less/Enter" + op: "Enter" + input: "net/strided_slice_9" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/LoopCond" + op: "LoopCond" + input: "net/while/Less" +} +node { + name: "net/while/Switch" + op: "Switch" + input: "net/while/Merge" + input: "net/while/LoopCond" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge" + } + } + } +} +node { + name: "net/while/Switch_1" + op: "Switch" + input: "net/while/Merge_1" + input: "net/while/LoopCond" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge_1" + } + } + } +} +node { + name: "net/while/Switch_2" + op: "Switch" + input: "net/while/Merge_2" + input: "net/while/LoopCond" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge_2" + } + } + } +} +node { + name: "net/while/Identity" + op: "Identity" + input: "net/while/Switch:1" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "net/while/Identity_1" + op: "Identity" + input: "net/while/Switch_1:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/Identity_2" + op: "Identity" + input: "net/while/Switch_2:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/TensorArrayReadV3" + op: "TensorArrayReadV3" + input: "net/while/TensorArrayReadV3/Enter" + input: "net/while/Identity" + input: "net/while/TensorArrayReadV3/Enter_1" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/TensorArrayReadV3/Enter" + op: "Enter" + input: "net/TensorArray_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/TensorArrayReadV3/Enter_1" + op: "Enter" + input: "net/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/mul" + op: "Mul" + input: "net/while/TensorArrayReadV3" + input: "net/while/mul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/mul/Enter" + op: "Enter" + input: "net/ones" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/mul_1" + op: "Mul" + input: "net/while/TensorArrayReadV3" + input: "net/while/mul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/mul_2" + op: "Mul" + input: "net/while/TensorArrayReadV3" + input: "net/while/mul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/MatMul" + op: "MatMul" + input: "net/while/mul" + input: "net/while/MatMul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/while/MatMul/Enter" + op: "Enter" + input: "net/strided_slice" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/MatMul_1" + op: "MatMul" + input: "net/while/mul_1" + input: "net/while/MatMul_1/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/while/MatMul_1/Enter" + op: "Enter" + input: "net/strided_slice_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/MatMul_2" + op: "MatMul" + input: "net/while/mul_2" + input: "net/while/MatMul_2/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/while/MatMul_2/Enter" + op: "Enter" + input: "net/strided_slice_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/BiasAdd" + op: "BiasAdd" + input: "net/while/MatMul" + input: "net/while/BiasAdd/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "net/while/BiasAdd/Enter" + op: "Enter" + input: "net/strided_slice_6" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/BiasAdd_1" + op: "BiasAdd" + input: "net/while/MatMul_1" + input: "net/while/BiasAdd_1/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "net/while/BiasAdd_1/Enter" + op: "Enter" + input: "net/strided_slice_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/BiasAdd_2" + op: "BiasAdd" + input: "net/while/MatMul_2" + input: "net/while/BiasAdd_2/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "net/while/BiasAdd_2/Enter" + op: "Enter" + input: "net/strided_slice_8" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/MatMul_3" + op: "MatMul" + input: "net/while/Identity_2" + input: "net/while/MatMul_3/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/while/MatMul_3/Enter" + op: "Enter" + input: "net/strided_slice_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/MatMul_4" + op: "MatMul" + input: "net/while/Identity_2" + input: "net/while/MatMul_4/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/while/MatMul_4/Enter" + op: "Enter" + input: "net/strided_slice_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/add" + op: "Add" + input: "net/while/BiasAdd" + input: "net/while/MatMul_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/mul_3/x" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.20000000298023224 + } + } + } +} +node { + name: "net/while/mul_3" + op: "Mul" + input: "net/while/mul_3/x" + input: "net/while/add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/add_1/y" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.5 + } + } + } +} +node { + name: "net/while/add_1" + op: "Add" + input: "net/while/mul_3" + input: "net/while/add_1/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/Const" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "net/while/Const_1" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "net/while/clip_by_value/Minimum" + op: "Minimum" + input: "net/while/add_1" + input: "net/while/Const_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/clip_by_value" + op: "Maximum" + input: "net/while/clip_by_value/Minimum" + input: "net/while/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/add_2" + op: "Add" + input: "net/while/BiasAdd_1" + input: "net/while/MatMul_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/mul_4/x" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.20000000298023224 + } + } + } +} +node { + name: "net/while/mul_4" + op: "Mul" + input: "net/while/mul_4/x" + input: "net/while/add_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/add_3/y" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.5 + } + } + } +} +node { + name: "net/while/add_3" + op: "Add" + input: "net/while/mul_4" + input: "net/while/add_3/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/Const_2" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "net/while/Const_3" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "net/while/clip_by_value_1/Minimum" + op: "Minimum" + input: "net/while/add_3" + input: "net/while/Const_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/clip_by_value_1" + op: "Maximum" + input: "net/while/clip_by_value_1/Minimum" + input: "net/while/Const_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/mul_5" + op: "Mul" + input: "net/while/clip_by_value_1" + input: "net/while/Identity_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/MatMul_5" + op: "MatMul" + input: "net/while/mul_5" + input: "net/while/MatMul_5/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "net/while/MatMul_5/Enter" + op: "Enter" + input: "net/strided_slice_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/add_4" + op: "Add" + input: "net/while/BiasAdd_2" + input: "net/while/MatMul_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/mul_6" + op: "Mul" + input: "net/while/clip_by_value" + input: "net/while/Identity_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/sub/x" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "net/while/sub" + op: "Sub" + input: "net/while/sub/x" + input: "net/while/clip_by_value" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/mul_7" + op: "Mul" + input: "net/while/sub" + input: "net/while/add_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/add_5" + op: "Add" + input: "net/while/mul_6" + input: "net/while/mul_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/TensorArrayWrite/TensorArrayWriteV3" + op: "TensorArrayWriteV3" + input: "net/while/TensorArrayWrite/TensorArrayWriteV3/Enter" + input: "net/while/Identity" + input: "net/while/add_5" + input: "net/while/Identity_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } +} +node { + name: "net/while/TensorArrayWrite/TensorArrayWriteV3/Enter" + op: "Enter" + input: "net/TensorArray" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "net/while/add_6/y" + op: "Const" + input: "^net/while/Identity" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "net/while/add_6" + op: "Add" + input: "net/while/Identity" + input: "net/while/add_6/y" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "net/while/NextIteration" + op: "NextIteration" + input: "net/while/add_6" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "net/while/NextIteration_1" + op: "NextIteration" + input: "net/while/TensorArrayWrite/TensorArrayWriteV3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/NextIteration_2" + op: "NextIteration" + input: "net/while/add_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/Exit" + op: "Exit" + input: "net/while/Switch" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "net/while/Exit_1" + op: "Exit" + input: "net/while/Switch_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/while/Exit_2" + op: "Exit" + input: "net/while/Switch_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/TensorArrayStack/TensorArraySizeV3" + op: "TensorArraySizeV3" + input: "net/TensorArray" + input: "net/while/Exit_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/TensorArray" + } + } + } +} +node { + name: "net/TensorArrayStack/range/start" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/TensorArray" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 0 + } + } + } +} +node { + name: "net/TensorArrayStack/range/delta" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/TensorArray" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "net/TensorArrayStack/range" + op: "Range" + input: "net/TensorArrayStack/range/start" + input: "net/TensorArrayStack/TensorArraySizeV3" + input: "net/TensorArrayStack/range/delta" + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/TensorArray" + } + } + } +} +node { + name: "net/TensorArrayStack/TensorArrayGatherV3" + op: "TensorArrayGatherV3" + input: "net/TensorArray" + input: "net/TensorArrayStack/range" + input: "net/while/Exit_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/TensorArray" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "element_shape" + value { + shape { + dim { + size: -1 + } + dim { + size: 20 + } + } + } + } +} +node { + name: "net/sub_1/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "net/sub_1" + op: "Sub" + input: "net/while/Exit" + input: "net/sub_1/y" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "net/TensorArrayReadV3" + op: "TensorArrayReadV3" + input: "net/TensorArray" + input: "net/sub_1" + input: "net/while/Exit_1" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "net/transpose_1/perm" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 3 + } + } + tensor_content: "\001\000\000\000\000\000\000\000\002\000\000\000" + } + } + } +} +node { + name: "net/transpose_1" + op: "Transpose" + input: "net/TensorArrayStack/TensorArrayGatherV3" + input: "net/transpose_1/perm" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tperm" + value { + type: DT_INT32 + } + } +} +node { + name: "dense_1/random_uniform/shape" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\024\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "dense_1/random_uniform/min" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: -0.5345224738121033 + } + } + } +} +node { + name: "dense_1/random_uniform/max" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.5345224738121033 + } + } + } +} +node { + name: "dense_1/random_uniform/RandomUniform" + op: "RandomUniform" + input: "dense_1/random_uniform/shape" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "seed" + value { + i: 87654321 + } + } + attr { + key: "seed2" + value { + i: 5882729 + } + } +} +node { + name: "dense_1/random_uniform/sub" + op: "Sub" + input: "dense_1/random_uniform/max" + input: "dense_1/random_uniform/min" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "dense_1/random_uniform/mul" + op: "Mul" + input: "dense_1/random_uniform/RandomUniform" + input: "dense_1/random_uniform/sub" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "dense_1/random_uniform" + op: "Add" + input: "dense_1/random_uniform/mul" + input: "dense_1/random_uniform/min" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "dense_1/kernel" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 20 + } + dim { + size: 1 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "dense_1/kernel/Assign" + op: "Assign" + input: "dense_1/kernel" + input: "dense_1/random_uniform" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/kernel" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "dense_1/kernel/read" + op: "Identity" + input: "dense_1/kernel" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/kernel" + } + } + } +} +node { + name: "dense_1/Const" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 1 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "dense_1/bias" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "dense_1/bias/Assign" + op: "Assign" + input: "dense_1/bias" + input: "dense_1/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/bias" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "dense_1/bias/read" + op: "Identity" + input: "dense_1/bias" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/bias" + } + } + } +} +node { + name: "dense_1/MatMul" + op: "MatMul" + input: "net/TensorArrayReadV3" + input: "dense_1/kernel/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "dense_1/BiasAdd" + op: "BiasAdd" + input: "dense_1/MatMul" + input: "dense_1/bias/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "dense_1/Sigmoid" + op: "Sigmoid" + input: "dense_1/BiasAdd" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "Placeholder" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 13 + } + dim { + size: 60 + } + } + } + } +} +node { + name: "Assign" + op: "Assign" + input: "net/kernel" + input: "Placeholder" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/kernel" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "Placeholder_1" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 20 + } + dim { + size: 60 + } + } + } + } +} +node { + name: "Assign_1" + op: "Assign" + input: "net/recurrent_kernel" + input: "Placeholder_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/recurrent_kernel" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "Placeholder_2" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 60 + } + } + } + } +} +node { + name: "Assign_2" + op: "Assign" + input: "net/bias" + input: "Placeholder_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/bias" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "Placeholder_3" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 20 + } + dim { + size: 1 + } + } + } + } +} +node { + name: "Assign_3" + op: "Assign" + input: "dense_1/kernel" + input: "Placeholder_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/kernel" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "Placeholder_4" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } +} +node { + name: "Assign_4" + op: "Assign" + input: "dense_1/bias" + input: "Placeholder_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/bias" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "IsVariableInitialized" + op: "IsVariableInitialized" + input: "net/kernel" + attr { + key: "_class" + value { + list { + s: "loc:@net/kernel" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_1" + op: "IsVariableInitialized" + input: "net/recurrent_kernel" + attr { + key: "_class" + value { + list { + s: "loc:@net/recurrent_kernel" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_2" + op: "IsVariableInitialized" + input: "net/bias" + attr { + key: "_class" + value { + list { + s: "loc:@net/bias" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_3" + op: "IsVariableInitialized" + input: "dense_1/kernel" + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/kernel" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_4" + op: "IsVariableInitialized" + input: "dense_1/bias" + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/bias" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "init" + op: "NoOp" + input: "^dense_1/bias/Assign" + input: "^dense_1/kernel/Assign" + input: "^net/bias/Assign" + input: "^net/kernel/Assign" + input: "^net/recurrent_kernel/Assign" +} +node { + name: "RMSprop/lr/initial_value" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0010000000474974513 + } + } + } +} +node { + name: "RMSprop/lr" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "RMSprop/lr/Assign" + op: "Assign" + input: "RMSprop/lr" + input: "RMSprop/lr/initial_value" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/lr" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "RMSprop/lr/read" + op: "Identity" + input: "RMSprop/lr" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/lr" + } + } + } +} +node { + name: "RMSprop/rho/initial_value" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.8999999761581421 + } + } + } +} +node { + name: "RMSprop/rho" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "RMSprop/rho/Assign" + op: "Assign" + input: "RMSprop/rho" + input: "RMSprop/rho/initial_value" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/rho" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "RMSprop/rho/read" + op: "Identity" + input: "RMSprop/rho" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/rho" + } + } + } +} +node { + name: "RMSprop/decay/initial_value" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "RMSprop/decay" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "RMSprop/decay/Assign" + op: "Assign" + input: "RMSprop/decay" + input: "RMSprop/decay/initial_value" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/decay" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "RMSprop/decay/read" + op: "Identity" + input: "RMSprop/decay" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/decay" + } + } + } +} +node { + name: "RMSprop/iterations/initial_value" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT64 + tensor_shape { + } + int64_val: 0 + } + } + } +} +node { + name: "RMSprop/iterations" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "shape" + value { + shape { + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "RMSprop/iterations/Assign" + op: "Assign" + input: "RMSprop/iterations" + input: "RMSprop/iterations/initial_value" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/iterations" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "RMSprop/iterations/read" + op: "Identity" + input: "RMSprop/iterations" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/iterations" + } + } + } +} +node { + name: "dense_1_target" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: -1 + } + dim { + size: -1 + } + } + } + } +} +node { + name: "dense_1_sample_weights" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: -1 + } + } + } + } +} +node { + name: "loss/dense_1_loss/add/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "loss/dense_1_loss/add" + op: "Add" + input: "loss/dense_1_loss/add/x" + input: "dense_1_target" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/Neg" + op: "Neg" + input: "loss/dense_1_loss/add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/add_1/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "loss/dense_1_loss/add_1" + op: "Add" + input: "loss/dense_1_loss/add_1/x" + input: "dense_1/Sigmoid" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/add_2/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0000000116860974e-07 + } + } + } +} +node { + name: "loss/dense_1_loss/add_2" + op: "Add" + input: "loss/dense_1_loss/add_1" + input: "loss/dense_1_loss/add_2/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/Log" + op: "Log" + input: "loss/dense_1_loss/add_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/mul" + op: "Mul" + input: "loss/dense_1_loss/Neg" + input: "loss/dense_1_loss/Log" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/sub/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "loss/dense_1_loss/sub" + op: "Sub" + input: "loss/dense_1_loss/sub/x" + input: "dense_1_target" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/Neg_1" + op: "Neg" + input: "loss/dense_1_loss/sub" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/sub_1/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "loss/dense_1_loss/sub_1" + op: "Sub" + input: "loss/dense_1_loss/sub_1/x" + input: "dense_1/Sigmoid" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/add_3/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0000000116860974e-07 + } + } + } +} +node { + name: "loss/dense_1_loss/add_3" + op: "Add" + input: "loss/dense_1_loss/sub_1" + input: "loss/dense_1_loss/add_3/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/Log_1" + op: "Log" + input: "loss/dense_1_loss/add_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/mul_1" + op: "Mul" + input: "loss/dense_1_loss/Neg_1" + input: "loss/dense_1_loss/Log_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/Const" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "loss/dense_1_loss/Mean" + op: "Mean" + input: "loss/dense_1_loss/mul_1" + input: "loss/dense_1_loss/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "loss/dense_1_loss/mul_2/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.8999999761581421 + } + } + } +} +node { + name: "loss/dense_1_loss/mul_2" + op: "Mul" + input: "loss/dense_1_loss/mul_2/x" + input: "loss/dense_1_loss/Mean" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/Const_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\000\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "loss/dense_1_loss/Mean_1" + op: "Mean" + input: "loss/dense_1_loss/mul" + input: "loss/dense_1_loss/Const_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "loss/dense_1_loss/mul_3/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.10000000149011612 + } + } + } +} +node { + name: "loss/dense_1_loss/mul_3" + op: "Mul" + input: "loss/dense_1_loss/mul_3/x" + input: "loss/dense_1_loss/Mean_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/add_4" + op: "Add" + input: "loss/dense_1_loss/mul_2" + input: "loss/dense_1_loss/mul_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/Mean_2/reduction_indices" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "loss/dense_1_loss/Mean_2" + op: "Mean" + input: "loss/dense_1_loss/add_4" + input: "loss/dense_1_loss/Mean_2/reduction_indices" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "loss/dense_1_loss/mul_4" + op: "Mul" + input: "loss/dense_1_loss/Mean_2" + input: "dense_1_sample_weights" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/NotEqual/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "loss/dense_1_loss/NotEqual" + op: "NotEqual" + input: "dense_1_sample_weights" + input: "loss/dense_1_loss/NotEqual/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/Cast" + op: "Cast" + input: "loss/dense_1_loss/NotEqual" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_BOOL + } + } + attr { + key: "Truncate" + value { + b: false + } + } +} +node { + name: "loss/dense_1_loss/Const_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "loss/dense_1_loss/Mean_3" + op: "Mean" + input: "loss/dense_1_loss/Cast" + input: "loss/dense_1_loss/Const_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "loss/dense_1_loss/truediv" + op: "RealDiv" + input: "loss/dense_1_loss/mul_4" + input: "loss/dense_1_loss/Mean_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "loss/dense_1_loss/Const_3" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "loss/dense_1_loss/Mean_4" + op: "Mean" + input: "loss/dense_1_loss/truediv" + input: "loss/dense_1_loss/Const_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "loss/mul/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "loss/mul" + op: "Mul" + input: "loss/mul/x" + input: "loss/dense_1_loss/Mean_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "metrics/acc/Round" + op: "Round" + input: "dense_1/Sigmoid" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "metrics/acc/Equal" + op: "Equal" + input: "dense_1_target" + input: "metrics/acc/Round" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "metrics/acc/Cast" + op: "Cast" + input: "metrics/acc/Equal" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_BOOL + } + } + attr { + key: "Truncate" + value { + b: false + } + } +} +node { + name: "metrics/acc/Mean/reduction_indices" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "metrics/acc/Mean" + op: "Mean" + input: "metrics/acc/Cast" + input: "metrics/acc/Mean/reduction_indices" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "metrics/acc/Const" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "metrics/acc/Mean_1" + op: "Mean" + input: "metrics/acc/Mean" + input: "metrics/acc/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/mul" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/grad_ys_0" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/mul" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/Fill" + op: "Fill" + input: "training/RMSprop/gradients/Shape" + input: "training/RMSprop/gradients/grad_ys_0" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/mul" + } + } + } + attr { + key: "index_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/f_count" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 0 + } + } + } +} +node { + name: "training/RMSprop/gradients/f_count_1" + op: "Enter" + input: "training/RMSprop/gradients/f_count" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/Merge" + op: "Merge" + input: "training/RMSprop/gradients/f_count_1" + input: "training/RMSprop/gradients/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/Switch" + op: "Switch" + input: "training/RMSprop/gradients/Merge" + input: "net/while/LoopCond" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/Add/y" + op: "Const" + input: "^net/while/Identity" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "training/RMSprop/gradients/Add" + op: "Add" + input: "training/RMSprop/gradients/Switch:1" + input: "training/RMSprop/gradients/Add/y" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/Add" + input: "^training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPushV2" + input: "^training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPushV2" + input: "^training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPushV2" + input: "^training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPushV2" + input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPushV2" + input: "^training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2_1" + input: "^training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2_1" + input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2_1" + input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2_1" + input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPushV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPushV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPushV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2_1" + input: "^training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2_1" + input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2_1" + input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPushV2" + input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPushV2" + input: "^training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPushV2" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/f_count_2" + op: "Exit" + input: "training/RMSprop/gradients/Switch" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/b_count" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "training/RMSprop/gradients/b_count_1" + op: "Enter" + input: "training/RMSprop/gradients/f_count_2" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/Merge_1" + op: "Merge" + input: "training/RMSprop/gradients/b_count_1" + input: "training/RMSprop/gradients/NextIteration_1" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/GreaterEqual" + op: "GreaterEqual" + input: "training/RMSprop/gradients/Merge_1" + input: "training/RMSprop/gradients/GreaterEqual/Enter" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/GreaterEqual/Enter" + op: "Enter" + input: "training/RMSprop/gradients/b_count" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/b_count_2" + op: "LoopCond" + input: "training/RMSprop/gradients/GreaterEqual" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/Switch_1" + op: "Switch" + input: "training/RMSprop/gradients/Merge_1" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/Sub" + op: "Sub" + input: "training/RMSprop/gradients/Switch_1:1" + input: "training/RMSprop/gradients/GreaterEqual/Enter" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/NextIteration_1" + op: "NextIteration" + input: "training/RMSprop/gradients/Sub" + input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/b_sync" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/b_count_3" + op: "Exit" + input: "training/RMSprop/gradients/Switch_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/mul_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/Fill" + input: "loss/dense_1_loss/Mean_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/mul" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/mul_grad/Mul_1" + op: "Mul" + input: "training/RMSprop/gradients/Fill" + input: "loss/mul/x" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/mul" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape/shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 1 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/mul_grad/Mul_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape/shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape" + op: "Shape" + input: "loss/dense_1_loss/truediv" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Tile" + op: "Tile" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tmultiples" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_1" + op: "Shape" + input: "loss/dense_1_loss/truediv" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_2" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod" + op: "Prod" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod_1" + op: "Prod" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Shape_2" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Const_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum/y" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum" + op: "Maximum" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum/y" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/floordiv" + op: "FloorDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Prod" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Maximum" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Cast" + op: "Cast" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/floordiv" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "Truncate" + value { + b: false + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/truediv" + op: "RealDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Tile" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/Cast" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape" + op: "Shape" + input: "loss/dense_1_loss/mul_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv" + op: "RealDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/truediv" + input: "loss/dense_1_loss/Mean_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Neg" + op: "Neg" + input: "loss/dense_1_loss/mul_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_1" + op: "RealDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Neg" + input: "loss/dense_1_loss/Mean_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_2" + op: "RealDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_1" + input: "loss/dense_1_loss/Mean_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/mul" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_4_grad/truediv" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/RealDiv_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Sum_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/truediv" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape_1" + op: "Shape" + input: "dense_1_sample_weights" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_4" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape" + input: "dense_1_sample_weights" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_4" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul_1" + op: "Mul" + input: "loss/dense_1_loss/Mean_2" + input: "training/RMSprop/gradients/loss/dense_1_loss/truediv_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Mul_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_4" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Sum_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape/shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_2" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_4_grad/Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape/shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_2" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Tile" + op: "Tile" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tmultiples" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_2" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv" + op: "RealDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Tile" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/Const_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_2_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv" + input: "loss/dense_1_loss/Mean" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_2_grad/Mul_1" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv" + input: "loss/dense_1_loss/mul_2/x" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_3_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv" + input: "loss/dense_1_loss/Mean_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_3_grad/Mul_1" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_2_grad/truediv" + input: "loss/dense_1_loss/mul_3/x" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape/shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_2_grad/Mul_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape/shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape" + op: "Shape" + input: "loss/dense_1_loss/mul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Tile" + op: "Tile" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tmultiples" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_1" + op: "Shape" + input: "loss/dense_1_loss/mul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_2" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod" + op: "Prod" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod_1" + op: "Prod" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Shape_2" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Const_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum/y" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum" + op: "Maximum" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum/y" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/floordiv" + op: "FloorDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Prod" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Maximum" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Cast" + op: "Cast" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/floordiv" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "Truncate" + value { + b: false + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/truediv" + op: "RealDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Tile" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/Cast" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape/shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\001\000\000\000\001\000\000\000" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_3_grad/Mul_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape/shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape" + op: "Shape" + input: "loss/dense_1_loss/mul" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Tile" + op: "Tile" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tmultiples" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_1" + op: "Shape" + input: "loss/dense_1_loss/mul" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_2" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod" + op: "Prod" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 0 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod_1" + op: "Prod" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Shape_2" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Const_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum/y" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum" + op: "Maximum" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum/y" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/floordiv" + op: "FloorDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Prod" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Maximum" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Cast" + op: "Cast" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/floordiv" + attr { + key: "DstT" + value { + type: DT_FLOAT + } + } + attr { + key: "SrcT" + value { + type: DT_INT32 + } + } + attr { + key: "Truncate" + value { + b: false + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/truediv" + op: "RealDiv" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Tile" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/Cast" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Mean_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape" + op: "Shape" + input: "loss/dense_1_loss/Neg_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_1" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape_1" + op: "Shape" + input: "loss/dense_1_loss/Log_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_1" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/truediv" + input: "loss/dense_1_loss/Log_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul_1" + op: "Mul" + input: "loss/dense_1_loss/Neg_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_grad/truediv" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Mul_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Sum_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape" + op: "Shape" + input: "loss/dense_1_loss/Neg" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape_1" + op: "Shape" + input: "loss/dense_1_loss/Log" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/truediv" + input: "loss/dense_1_loss/Log" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul_1" + op: "Mul" + input: "loss/dense_1_loss/Neg" + input: "training/RMSprop/gradients/loss/dense_1_loss/Mean_1_grad/truediv" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Mul_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Sum_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/mul" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/Reciprocal" + op: "Reciprocal" + input: "loss/dense_1_loss/add_3" + input: "^training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Log_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/mul" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_1_grad/Reshape_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/Reciprocal" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Log_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/Reciprocal" + op: "Reciprocal" + input: "loss/dense_1_loss/add_2" + input: "^training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Log" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/mul" + op: "Mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/mul_grad/Reshape_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/Reciprocal" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/Log" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape" + op: "Shape" + input: "loss/dense_1_loss/sub_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_3" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_3" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_3" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/Log_1_grad/mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_3" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Sum_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape" + op: "Shape" + input: "loss/dense_1_loss/add_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_2" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_2" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_2" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/Log_grad/mul" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_2" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Sum_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/sub_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape_1" + op: "Shape" + input: "dense_1/Sigmoid" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/sub_1" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/sub_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/sub_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/sub_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_3_grad/Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/sub_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Neg" + op: "Neg" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Sum_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/sub_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Neg" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/sub_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape_1" + op: "Shape" + input: "dense_1/Sigmoid" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_1" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_2_grad/Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Sum_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/add_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/AddN" + op: "AddN" + input: "training/RMSprop/gradients/loss/dense_1_loss/sub_1_grad/Reshape_1" + input: "training/RMSprop/gradients/loss/dense_1_loss/add_1_grad/Reshape_1" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@loss/dense_1_loss/sub_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad" + op: "SigmoidGrad" + input: "dense_1/Sigmoid" + input: "training/RMSprop/gradients/AddN" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/Sigmoid" + } + } + } +} +node { + name: "training/RMSprop/gradients/dense_1/BiasAdd_grad/BiasAddGrad" + op: "BiasAddGrad" + input: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/BiasAdd" + } + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul" + op: "MatMul" + input: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad" + input: "dense_1/kernel/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/MatMul" + } + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul_1" + op: "MatMul" + input: "net/TensorArrayReadV3" + input: "training/RMSprop/gradients/dense_1/Sigmoid_grad/SigmoidGrad" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/MatMul" + } + } + } + attr { + key: "transpose_a" + value { + b: true + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/TensorArrayGradV3" + op: "TensorArrayGradV3" + input: "net/TensorArray" + input: "net/while/Exit_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/TensorArray" + s: "loc:@net/TensorArrayReadV3" + } + } + } + attr { + key: "source" + value { + s: "training/RMSprop/gradients" + } + } +} +node { + name: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/gradient_flow" + op: "Identity" + input: "net/while/Exit_1" + input: "^training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/TensorArrayGradV3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/TensorArray" + s: "loc:@net/TensorArrayReadV3" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayWrite/TensorArrayWriteV3" + op: "TensorArrayWriteV3" + input: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/TensorArrayGradV3" + input: "net/sub_1" + input: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul" + input: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayGrad/gradient_flow" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/TensorArrayReadV3" + } + } + } +} +node { + name: "training/RMSprop/gradients/zeros_like" + op: "ZerosLike" + input: "net/while/Exit_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Exit_1_grad/b_exit" + op: "Enter" + input: "training/RMSprop/gradients/net/TensorArrayReadV3_grad/TensorArrayWrite/TensorArrayWriteV3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_1" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Exit_2_grad/b_exit" + op: "Enter" + input: "training/RMSprop/gradients/zeros_like" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Exit_2" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Switch_1_grad/b_switch" + op: "Merge" + input: "training/RMSprop/gradients/net/while/Exit_1_grad/b_exit" + input: "training/RMSprop/gradients/net/while/Switch_1_grad_1/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Switch_2_grad/b_switch" + op: "Merge" + input: "training/RMSprop/gradients/net/while/Exit_2_grad/b_exit" + input: "training/RMSprop/gradients/net/while/Switch_2_grad_1/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/Switch_1_grad/b_switch" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Merge_2_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/Switch_2_grad/b_switch" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Enter_1_grad/Exit" + op: "Exit" + input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Enter_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Enter_2_grad/Exit" + op: "Exit" + input: "training/RMSprop/gradients/net/while/Merge_2_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Enter_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3" + op: "TensorArrayGradV3" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3/Enter" + input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch:1" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "source" + value { + s: "training/RMSprop/gradients" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3/Enter" + op: "Enter" + input: "net/TensorArray" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/gradient_flow" + op: "Identity" + input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch:1" + input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3" + op: "TensorArrayReadV3" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/TensorArrayGradV3" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayGrad/gradient_flow" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Identity" + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Identity" + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/Enter" + input: "net/while/Identity" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/b_sync" + op: "ControlTrigger" + input: "^training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2" + input: "^training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2" + input: "^training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2" + input: "^training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2" + input: "^training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3/StackPopV2" + input: "^training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1" + input: "^training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1" + input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1" + input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1" + input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1" + input: "^training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1" + input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1" + input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2" + input: "^training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2" + input: "^training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/AddN_1" + op: "AddN" + input: "training/RMSprop/gradients/net/while/Merge_2_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/TensorArrayWrite/TensorArrayWriteV3_grad/TensorArrayReadV3" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/Shape" + op: "Shape" + input: "net/while/mul_6" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/Shape_1" + op: "Shape" + input: "net/while/mul_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/add_5_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc_1" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Const_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPushV2_1" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/Enter_1" + input: "training/RMSprop/gradients/net/while/add_5_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/AddN_1" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_5_grad/Sum" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/AddN_1" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_5_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_5_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/add_5_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Shape" + op: "Shape" + input: "net/while/clip_by_value" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Shape_1" + op: "Shape" + input: "net/while/Identity_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc_1" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Const_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPushV2_1" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/Enter_1" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Identity_2" + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Identity_2" + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/Enter" + input: "net/while/Identity_2" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Sum" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1" + op: "Mul" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/Enter" + input: "net/while/clip_by_value" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul_1" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/mul_6_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Shape" + op: "Shape" + input: "net/while/sub" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Shape_1" + op: "Shape" + input: "net/while/add_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc_1" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Const_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPushV2_1" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/Enter_1" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/Enter" + input: "net/while/add_4" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Sum" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1" + op: "Mul" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_5_grad/Reshape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + s: "loc:@net/while/sub" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + s: "loc:@net/while/sub" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/Enter" + input: "net/while/sub" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Mul_1" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/mul_7_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_7" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Switch_1_grad_1/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/Merge_1_grad/Switch:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/Shape" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/Shape_1" + op: "Shape" + input: "net/while/clip_by_value" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/sub_grad/Shape" + input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/sub_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape" + input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/sub_grad/Sum" + input: "training/RMSprop/gradients/net/while/sub_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape" + input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/Neg" + op: "Neg" + input: "training/RMSprop/gradients/net/while/sub_grad/Sum_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/sub_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/sub_grad/Neg" + input: "training/RMSprop/gradients/net/while/sub_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/sub" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/Shape" + op: "Shape" + input: "net/while/BiasAdd_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/Shape_1" + op: "Shape" + input: "net/while/MatMul_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/add_4_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc_1" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Const_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPushV2_1" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/Enter_1" + input: "training/RMSprop/gradients/net/while/add_4_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_4_grad/Sum" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_7_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_4_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_4_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/add_4_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/AddN_2" + op: "AddN" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape" + input: "training/RMSprop/gradients/net/while/sub_grad/Reshape_1" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape" + op: "Shape" + input: "net/while/clip_by_value/Minimum" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_2" + op: "Shape" + input: "training/RMSprop/gradients/AddN_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros/Const" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros" + op: "Fill" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "index_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual" + op: "GreaterEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Enter" + input: "net/while/clip_by_value/Minimum" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual/Const_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select" + op: "Select" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual" + input: "training/RMSprop/gradients/AddN_2" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select_1" + op: "Select" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/GreaterEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/zeros" + input: "training/RMSprop/gradients/AddN_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Select_1" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_2_grad/BiasAddGrad" + op: "BiasAddGrad" + input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_2" + } + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5" + } + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul/Enter" + op: "Enter" + input: "net/strided_slice_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5" + } + } + } + attr { + key: "transpose_a" + value { + b: true + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5" + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5" + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/Enter" + input: "net/while/mul_5" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape" + op: "Shape" + input: "net/while/add_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_2" + op: "Shape" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros/Const" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros" + op: "Fill" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_2" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "index_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual" + op: "LessEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Enter" + input: "net/while/add_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual/Const_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select" + op: "Select" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select_1" + op: "Select" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/LessEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/zeros" + input: "training/RMSprop/gradients/net/while/clip_by_value_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Select_1" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape" + input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2" + } + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul/Enter" + op: "Enter" + input: "net/strided_slice_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_4_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2" + } + } + } + attr { + key: "transpose_a" + value { + b: true + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2" + s: "loc:@net/while/mul_2" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2" + s: "loc:@net/while/mul_2" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/Enter" + input: "net/while/mul_2" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_2/Enter" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 20 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_2/Enter" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_2" + op: "Merge" + input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_1" + input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_2" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Add" + op: "Add" + input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/BiasAdd_2_grad/BiasAddGrad" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_3" + op: "Exit" + input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Shape" + op: "Shape" + input: "net/while/clip_by_value_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Shape_1" + op: "Shape" + input: "net/while/Identity_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc_1" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Const_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPushV2_1" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/Enter_1" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Sum" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1" + op: "Mul" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/Enter" + input: "net/while/clip_by_value_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Mul_1" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/mul_5_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5/Enter" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 20 + } + dim { + size: 20 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5/Enter" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_2" + op: "Merge" + input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_1" + input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_2" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Add" + op: "Add" + input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/MatMul_5_grad/MatMul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_3" + op: "Exit" + input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_5/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/Shape" + op: "Shape" + input: "net/while/mul_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/Shape_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/add_1_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape" + input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_1_grad/Sum" + input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value/Minimum_grad/Reshape" + input: "training/RMSprop/gradients/net/while/add_1_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_1_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_1_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/add_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2/Enter" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 13 + } + dim { + size: 20 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2/Enter" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_2" + op: "Merge" + input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_1" + input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_2" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Add" + op: "Add" + input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/MatMul_2_grad/MatMul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_3" + op: "Exit" + input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_2/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_8_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_8" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 60 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_8_grad/StridedSliceGrad" + op: "StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_8_grad/Shape" + input: "net/strided_slice_8/stack" + input: "net/strided_slice_8/stack_1" + input: "net/strided_slice_8/stack_2" + input: "training/RMSprop/gradients/net/while/BiasAdd_2/Enter_grad/b_acc_3" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_8" + } + } + } + attr { + key: "begin_mask" + value { + i: 0 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape" + op: "Shape" + input: "net/while/clip_by_value_1/Minimum" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_2" + op: "Shape" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros/Const" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros" + op: "Fill" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "index_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual" + op: "GreaterEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Enter" + input: "net/while/clip_by_value_1/Minimum" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual/Const_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select" + op: "Select" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select_1" + op: "Select" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/GreaterEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/zeros" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Select_1" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_5_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_5" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\024\000\000\000<\000\000\000" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_5_grad/StridedSliceGrad" + op: "StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_5_grad/Shape" + input: "net/strided_slice_5/stack" + input: "net/strided_slice_5/stack_1" + input: "net/strided_slice_5/stack_2" + input: "training/RMSprop/gradients/net/while/MatMul_5/Enter_grad/b_acc_3" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_5" + } + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 3 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Shape" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Shape_1" + op: "Shape" + input: "net/while/add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Shape" + input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/net/while/add_1_grad/Reshape" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/Enter" + input: "net/while/add" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul" + input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Sum" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1" + op: "Mul" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1/Const" + input: "training/RMSprop/gradients/net/while/add_1_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1/Const" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.20000000298023224 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Mul_1" + input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/mul_3_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_4_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\r\000\000\000<\000\000\000" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_4_grad/StridedSliceGrad" + op: "StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_4_grad/Shape" + input: "net/strided_slice_4/stack" + input: "net/strided_slice_4/stack_1" + input: "net/strided_slice_4/stack_2" + input: "training/RMSprop/gradients/net/while/MatMul_2/Enter_grad/b_acc_3" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_4" + } + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 3 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape" + op: "Shape" + input: "net/while/add_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_2" + op: "Shape" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros/Const" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros" + op: "Fill" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "index_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual" + op: "LessEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Enter" + input: "net/while/add_3" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual/Const_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select" + op: "Select" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select_1" + op: "Select" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/LessEqual" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/zeros" + input: "training/RMSprop/gradients/net/while/clip_by_value_1_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Select_1" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/clip_by_value_1/Minimum" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/Shape" + op: "Shape" + input: "net/while/BiasAdd" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/Shape_1" + op: "Shape" + input: "net/while/MatMul_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/add_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc_1" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Const_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPushV2_1" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/Enter_1" + input: "training/RMSprop/gradients/net/while/add_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_grad/Sum" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_3_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/add_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/Shape" + op: "Shape" + input: "net/while/mul_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/Shape_1" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_3_grad/Shape_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/add_3_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape" + input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_3_grad/Sum" + input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/clip_by_value_1/Minimum_grad/Reshape" + input: "training/RMSprop/gradients/net/while/add_3_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_3_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_3_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/add_3_grad/Shape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_3" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_grad/BiasAddGrad" + op: "BiasAddGrad" + input: "training/RMSprop/gradients/net/while/add_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd" + } + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/add_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3" + } + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul/Enter" + op: "Enter" + input: "net/strided_slice_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul_1" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_grad/Reshape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3" + } + } + } + attr { + key: "transpose_a" + value { + b: true + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Shape" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + } + } + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Shape_1" + op: "Shape" + input: "net/while/add_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Shape" + input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul" + op: "Mul" + input: "training/RMSprop/gradients/net/while/add_3_grad/Reshape" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/Enter" + input: "net/while/add_2" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul" + input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Sum" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Shape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1" + op: "Mul" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1/Const" + input: "training/RMSprop/gradients/net/while/add_3_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1/Const" + op: "Const" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.20000000298023224 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Mul_1" + input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/mul_4_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_4" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/add_grad/Reshape" + input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul" + } + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul/Enter" + op: "Enter" + input: "net/strided_slice" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul" + } + } + } + attr { + key: "transpose_a" + value { + b: true + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul" + s: "loc:@net/while/mul" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul" + s: "loc:@net/while/mul" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/Enter" + input: "net/while/mul" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd/Enter" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 20 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd/Enter" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_2" + op: "Merge" + input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_1" + input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_2" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Add" + op: "Add" + input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/BiasAdd_grad/BiasAddGrad" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_3" + op: "Exit" + input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3/Enter" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 20 + } + dim { + size: 20 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3/Enter" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_2" + op: "Merge" + input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_1" + input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_2" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Add" + op: "Add" + input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_3" + op: "Exit" + input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_3/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/Shape" + op: "Shape" + input: "net/while/BiasAdd_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/Shape_1" + op: "Shape" + input: "net/while/MatMul_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "out_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs" + op: "BroadcastGradientArgs" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter" + input: "training/RMSprop/gradients/net/while/add_2_grad/Shape" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const_1" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc_1" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Const_1" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPushV2_1" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/Enter_1" + input: "training/RMSprop/gradients/net/while/add_2_grad/Shape_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "elem_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/f_acc_1" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/Sum" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/Reshape" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_2_grad/Sum" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/Sum_1" + op: "Sum" + input: "training/RMSprop/gradients/net/while/mul_4_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs:1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tidx" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } + attr { + key: "keep_dims" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/add_2_grad/Reshape_1" + op: "Reshape" + input: "training/RMSprop/gradients/net/while/add_2_grad/Sum_1" + input: "training/RMSprop/gradients/net/while/add_2_grad/BroadcastGradientArgs/StackPopV2_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "Tshape" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/add_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul/Enter" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 13 + } + dim { + size: 20 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul/Enter" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_2" + op: "Merge" + input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_1" + input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_2" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Add" + op: "Add" + input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/MatMul_grad/MatMul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_3" + op: "Exit" + input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_6_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_6" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 60 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_6_grad/StridedSliceGrad" + op: "StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_6_grad/Shape" + input: "net/strided_slice_6/stack" + input: "net/strided_slice_6/stack_1" + input: "net/strided_slice_6/stack_2" + input: "training/RMSprop/gradients/net/while/BiasAdd/Enter_grad/b_acc_3" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_6" + } + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 0 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_1_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\024\000\000\000<\000\000\000" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_1_grad/StridedSliceGrad" + op: "StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_1_grad/Shape" + input: "net/strided_slice_1/stack" + input: "net/strided_slice_1/stack_1" + input: "net/strided_slice_1/stack_2" + input: "training/RMSprop/gradients/net/while/MatMul_3/Enter_grad/b_acc_3" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_1" + } + } + } + attr { + key: "begin_mask" + value { + i: 3 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_1_grad/BiasAddGrad" + op: "BiasAddGrad" + input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_1" + } + } + } + attr { + key: "data_format" + value { + s: "NHWC" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4" + } + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul/Enter" + op: "Enter" + input: "net/strided_slice_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul_1" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Mul/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4" + } + } + } + attr { + key: "transpose_a" + value { + b: true + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\r\000\000\000<\000\000\000" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_grad/StridedSliceGrad" + op: "StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_grad/Shape" + input: "net/strided_slice/stack" + input: "net/strided_slice/stack_1" + input: "net/strided_slice/stack_2" + input: "training/RMSprop/gradients/net/while/MatMul/Enter_grad/b_acc_3" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice" + } + } + } + attr { + key: "begin_mask" + value { + i: 3 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape" + input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul/Enter" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1" + } + } + } + attr { + key: "transpose_a" + value { + b: false + } + } + attr { + key: "transpose_b" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul/Enter" + op: "Enter" + input: "net/strided_slice_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1" + op: "MatMul" + input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2" + input: "training/RMSprop/gradients/net/while/add_2_grad/Reshape" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1" + } + } + } + attr { + key: "transpose_a" + value { + b: true + } + } + attr { + key: "transpose_b" + value { + b: false + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Const" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1" + s: "loc:@net/while/mul_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: -1 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/f_acc" + op: "StackV2" + input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1" + s: "loc:@net/while/mul_1" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } + attr { + key: "stack_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1" + } + } + } + attr { + key: "frame_name" + value { + s: "net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPushV2" + op: "StackPushV2" + input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/Enter" + input: "net/while/mul_1" + input: "^training/RMSprop/gradients/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1" + } + } + } + attr { + key: "swap_memory" + value { + b: true + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2" + op: "StackPopV2" + input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2/Enter" + input: "^training/RMSprop/gradients/Sub" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1" + } + } + } + attr { + key: "elem_type" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/StackPopV2/Enter" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1/f_acc" + attr { + key: "T" + value { + type: DT_RESOURCE + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: true + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_1/Enter" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 20 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_1/Enter" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_2" + op: "Merge" + input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_1" + input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_2" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Add" + op: "Add" + input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/BiasAdd_1_grad/BiasAddGrad" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_3" + op: "Exit" + input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/BiasAdd_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/AddN_3" + op: "AddN" + input: "training/RMSprop/gradients/net/while/mul_6_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/mul_5_grad/Reshape_1" + input: "training/RMSprop/gradients/net/while/MatMul_3_grad/MatMul" + input: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul" + attr { + key: "N" + value { + i: 4 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/mul_6" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4/Enter" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 20 + } + dim { + size: 20 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4/Enter" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_2" + op: "Merge" + input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_1" + input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_2" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Add" + op: "Add" + input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/MatMul_4_grad/MatMul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_3" + op: "Exit" + input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_4/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1/Enter" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 13 + } + dim { + size: 20 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_1" + op: "Enter" + input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1/Enter" + } + } + } + attr { + key: "frame_name" + value { + s: "training/RMSprop/gradients/net/while/while_context" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 32 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_2" + op: "Merge" + input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_1" + input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Switch" + op: "Switch" + input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_2" + input: "training/RMSprop/gradients/b_count_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Add" + op: "Add" + input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Switch:1" + input: "training/RMSprop/gradients/net/while/MatMul_1_grad/MatMul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_3" + op: "Exit" + input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/Switch" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/MatMul_1/Enter" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_7_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_7" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 1 + } + } + int_val: 60 + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_7_grad/StridedSliceGrad" + op: "StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_7_grad/Shape" + input: "net/strided_slice_7/stack" + input: "net/strided_slice_7/stack_1" + input: "net/strided_slice_7/stack_2" + input: "training/RMSprop/gradients/net/while/BiasAdd_1/Enter_grad/b_acc_3" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_7" + } + } + } + attr { + key: "begin_mask" + value { + i: 0 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 0 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "training/RMSprop/gradients/net/while/Switch_2_grad_1/NextIteration" + op: "NextIteration" + input: "training/RMSprop/gradients/AddN_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/while/Merge_2" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_3_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_3" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\024\000\000\000<\000\000\000" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_3_grad/StridedSliceGrad" + op: "StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_3_grad/Shape" + input: "net/strided_slice_3/stack" + input: "net/strided_slice_3/stack_1" + input: "net/strided_slice_3/stack_2" + input: "training/RMSprop/gradients/net/while/MatMul_4/Enter_grad/b_acc_3" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_3" + } + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_2_grad/Shape" + op: "Const" + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_2" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\r\000\000\000<\000\000\000" + } + } + } +} +node { + name: "training/RMSprop/gradients/net/strided_slice_2_grad/StridedSliceGrad" + op: "StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_2_grad/Shape" + input: "net/strided_slice_2/stack" + input: "net/strided_slice_2/stack_1" + input: "net/strided_slice_2/stack_2" + input: "training/RMSprop/gradients/net/while/MatMul_1/Enter_grad/b_acc_3" + attr { + key: "Index" + value { + type: DT_INT32 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_2" + } + } + } + attr { + key: "begin_mask" + value { + i: 1 + } + } + attr { + key: "ellipsis_mask" + value { + i: 0 + } + } + attr { + key: "end_mask" + value { + i: 1 + } + } + attr { + key: "new_axis_mask" + value { + i: 0 + } + } + attr { + key: "shrink_axis_mask" + value { + i: 0 + } + } +} +node { + name: "training/RMSprop/gradients/AddN_4" + op: "AddN" + input: "training/RMSprop/gradients/net/strided_slice_8_grad/StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_6_grad/StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_7_grad/StridedSliceGrad" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_8" + } + } + } +} +node { + name: "training/RMSprop/gradients/AddN_5" + op: "AddN" + input: "training/RMSprop/gradients/net/strided_slice_5_grad/StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_1_grad/StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_3_grad/StridedSliceGrad" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_5" + } + } + } +} +node { + name: "training/RMSprop/gradients/AddN_6" + op: "AddN" + input: "training/RMSprop/gradients/net/strided_slice_4_grad/StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_grad/StridedSliceGrad" + input: "training/RMSprop/gradients/net/strided_slice_2_grad/StridedSliceGrad" + attr { + key: "N" + value { + i: 3 + } + } + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/strided_slice_4" + } + } + } +} +node { + name: "training/RMSprop/zeros" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 13 + } + dim { + size: 60 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/Variable" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 13 + } + dim { + size: 60 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/Variable/Assign" + op: "Assign" + input: "training/RMSprop/Variable" + input: "training/RMSprop/zeros" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/Variable/read" + op: "Identity" + input: "training/RMSprop/Variable" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable" + } + } + } +} +node { + name: "training/RMSprop/zeros_1/shape_as_tensor" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + dim { + size: 2 + } + } + tensor_content: "\024\000\000\000<\000\000\000" + } + } + } +} +node { + name: "training/RMSprop/zeros_1/Const" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/zeros_1" + op: "Fill" + input: "training/RMSprop/zeros_1/shape_as_tensor" + input: "training/RMSprop/zeros_1/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "index_type" + value { + type: DT_INT32 + } + } +} +node { + name: "training/RMSprop/Variable_1" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 20 + } + dim { + size: 60 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/Variable_1/Assign" + op: "Assign" + input: "training/RMSprop/Variable_1" + input: "training/RMSprop/zeros_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_1" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/Variable_1/read" + op: "Identity" + input: "training/RMSprop/Variable_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_1" + } + } + } +} +node { + name: "training/RMSprop/zeros_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 60 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/Variable_2" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 60 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/Variable_2/Assign" + op: "Assign" + input: "training/RMSprop/Variable_2" + input: "training/RMSprop/zeros_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_2" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/Variable_2/read" + op: "Identity" + input: "training/RMSprop/Variable_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_2" + } + } + } +} +node { + name: "training/RMSprop/zeros_3" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 20 + } + dim { + size: 1 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/Variable_3" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 20 + } + dim { + size: 1 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/Variable_3/Assign" + op: "Assign" + input: "training/RMSprop/Variable_3" + input: "training/RMSprop/zeros_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_3" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/Variable_3/read" + op: "Identity" + input: "training/RMSprop/Variable_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_3" + } + } + } +} +node { + name: "training/RMSprop/zeros_4" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + dim { + size: 1 + } + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/Variable_4" + op: "VariableV2" + attr { + key: "container" + value { + s: "" + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } + attr { + key: "shared_name" + value { + s: "" + } + } +} +node { + name: "training/RMSprop/Variable_4/Assign" + op: "Assign" + input: "training/RMSprop/Variable_4" + input: "training/RMSprop/zeros_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_4" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/Variable_4/read" + op: "Identity" + input: "training/RMSprop/Variable_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_4" + } + } + } +} +node { + name: "training/RMSprop/AssignAdd/value" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT64 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT64 + tensor_shape { + } + int64_val: 1 + } + } + } +} +node { + name: "training/RMSprop/AssignAdd" + op: "AssignAdd" + input: "RMSprop/iterations" + input: "training/RMSprop/AssignAdd/value" + attr { + key: "T" + value { + type: DT_INT64 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/iterations" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } +} +node { + name: "training/RMSprop/mul" + op: "Mul" + input: "RMSprop/rho/read" + input: "training/RMSprop/Variable/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "training/RMSprop/sub" + op: "Sub" + input: "training/RMSprop/sub/x" + input: "RMSprop/rho/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Square" + op: "Square" + input: "training/RMSprop/gradients/AddN_6" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/mul_1" + op: "Mul" + input: "training/RMSprop/sub" + input: "training/RMSprop/Square" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add" + op: "Add" + input: "training/RMSprop/mul" + input: "training/RMSprop/mul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign" + op: "Assign" + input: "training/RMSprop/Variable" + input: "training/RMSprop/add" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/mul_2" + op: "Mul" + input: "RMSprop/lr/read" + input: "training/RMSprop/gradients/AddN_6" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Const" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/Const_1" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: inf + } + } + } +} +node { + name: "training/RMSprop/clip_by_value/Minimum" + op: "Minimum" + input: "training/RMSprop/add" + input: "training/RMSprop/Const_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/clip_by_value" + op: "Maximum" + input: "training/RMSprop/clip_by_value/Minimum" + input: "training/RMSprop/Const" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Sqrt" + op: "Sqrt" + input: "training/RMSprop/clip_by_value" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add_1/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0000000116860974e-07 + } + } + } +} +node { + name: "training/RMSprop/add_1" + op: "Add" + input: "training/RMSprop/Sqrt" + input: "training/RMSprop/add_1/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/truediv" + op: "RealDiv" + input: "training/RMSprop/mul_2" + input: "training/RMSprop/add_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub_1" + op: "Sub" + input: "net/kernel/read" + input: "training/RMSprop/truediv" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign_1" + op: "Assign" + input: "net/kernel" + input: "training/RMSprop/sub_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/kernel" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/mul_3" + op: "Mul" + input: "RMSprop/rho/read" + input: "training/RMSprop/Variable_1/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub_2/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "training/RMSprop/sub_2" + op: "Sub" + input: "training/RMSprop/sub_2/x" + input: "RMSprop/rho/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Square_1" + op: "Square" + input: "training/RMSprop/gradients/AddN_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/mul_4" + op: "Mul" + input: "training/RMSprop/sub_2" + input: "training/RMSprop/Square_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add_2" + op: "Add" + input: "training/RMSprop/mul_3" + input: "training/RMSprop/mul_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign_2" + op: "Assign" + input: "training/RMSprop/Variable_1" + input: "training/RMSprop/add_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_1" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/mul_5" + op: "Mul" + input: "RMSprop/lr/read" + input: "training/RMSprop/gradients/AddN_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Const_2" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/Const_3" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: inf + } + } + } +} +node { + name: "training/RMSprop/clip_by_value_1/Minimum" + op: "Minimum" + input: "training/RMSprop/add_2" + input: "training/RMSprop/Const_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/clip_by_value_1" + op: "Maximum" + input: "training/RMSprop/clip_by_value_1/Minimum" + input: "training/RMSprop/Const_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Sqrt_1" + op: "Sqrt" + input: "training/RMSprop/clip_by_value_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add_3/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0000000116860974e-07 + } + } + } +} +node { + name: "training/RMSprop/add_3" + op: "Add" + input: "training/RMSprop/Sqrt_1" + input: "training/RMSprop/add_3/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/truediv_1" + op: "RealDiv" + input: "training/RMSprop/mul_5" + input: "training/RMSprop/add_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub_3" + op: "Sub" + input: "net/recurrent_kernel/read" + input: "training/RMSprop/truediv_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign_3" + op: "Assign" + input: "net/recurrent_kernel" + input: "training/RMSprop/sub_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/recurrent_kernel" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/mul_6" + op: "Mul" + input: "RMSprop/rho/read" + input: "training/RMSprop/Variable_2/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub_4/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "training/RMSprop/sub_4" + op: "Sub" + input: "training/RMSprop/sub_4/x" + input: "RMSprop/rho/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Square_2" + op: "Square" + input: "training/RMSprop/gradients/AddN_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/mul_7" + op: "Mul" + input: "training/RMSprop/sub_4" + input: "training/RMSprop/Square_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add_4" + op: "Add" + input: "training/RMSprop/mul_6" + input: "training/RMSprop/mul_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign_4" + op: "Assign" + input: "training/RMSprop/Variable_2" + input: "training/RMSprop/add_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_2" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/mul_8" + op: "Mul" + input: "RMSprop/lr/read" + input: "training/RMSprop/gradients/AddN_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Const_4" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/Const_5" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: inf + } + } + } +} +node { + name: "training/RMSprop/clip_by_value_2/Minimum" + op: "Minimum" + input: "training/RMSprop/add_4" + input: "training/RMSprop/Const_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/clip_by_value_2" + op: "Maximum" + input: "training/RMSprop/clip_by_value_2/Minimum" + input: "training/RMSprop/Const_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Sqrt_2" + op: "Sqrt" + input: "training/RMSprop/clip_by_value_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add_5/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0000000116860974e-07 + } + } + } +} +node { + name: "training/RMSprop/add_5" + op: "Add" + input: "training/RMSprop/Sqrt_2" + input: "training/RMSprop/add_5/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/truediv_2" + op: "RealDiv" + input: "training/RMSprop/mul_8" + input: "training/RMSprop/add_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub_5" + op: "Sub" + input: "net/bias/read" + input: "training/RMSprop/truediv_2" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign_5" + op: "Assign" + input: "net/bias" + input: "training/RMSprop/sub_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@net/bias" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/mul_9" + op: "Mul" + input: "RMSprop/rho/read" + input: "training/RMSprop/Variable_3/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub_6/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "training/RMSprop/sub_6" + op: "Sub" + input: "training/RMSprop/sub_6/x" + input: "RMSprop/rho/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Square_3" + op: "Square" + input: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/mul_10" + op: "Mul" + input: "training/RMSprop/sub_6" + input: "training/RMSprop/Square_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add_6" + op: "Add" + input: "training/RMSprop/mul_9" + input: "training/RMSprop/mul_10" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign_6" + op: "Assign" + input: "training/RMSprop/Variable_3" + input: "training/RMSprop/add_6" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_3" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/mul_11" + op: "Mul" + input: "RMSprop/lr/read" + input: "training/RMSprop/gradients/dense_1/MatMul_grad/MatMul_1" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Const_6" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/Const_7" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: inf + } + } + } +} +node { + name: "training/RMSprop/clip_by_value_3/Minimum" + op: "Minimum" + input: "training/RMSprop/add_6" + input: "training/RMSprop/Const_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/clip_by_value_3" + op: "Maximum" + input: "training/RMSprop/clip_by_value_3/Minimum" + input: "training/RMSprop/Const_6" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Sqrt_3" + op: "Sqrt" + input: "training/RMSprop/clip_by_value_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add_7/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0000000116860974e-07 + } + } + } +} +node { + name: "training/RMSprop/add_7" + op: "Add" + input: "training/RMSprop/Sqrt_3" + input: "training/RMSprop/add_7/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/truediv_3" + op: "RealDiv" + input: "training/RMSprop/mul_11" + input: "training/RMSprop/add_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub_7" + op: "Sub" + input: "dense_1/kernel/read" + input: "training/RMSprop/truediv_3" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign_7" + op: "Assign" + input: "dense_1/kernel" + input: "training/RMSprop/sub_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/kernel" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/mul_12" + op: "Mul" + input: "RMSprop/rho/read" + input: "training/RMSprop/Variable_4/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub_8/x" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0 + } + } + } +} +node { + name: "training/RMSprop/sub_8" + op: "Sub" + input: "training/RMSprop/sub_8/x" + input: "RMSprop/rho/read" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Square_4" + op: "Square" + input: "training/RMSprop/gradients/dense_1/BiasAdd_grad/BiasAddGrad" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/mul_13" + op: "Mul" + input: "training/RMSprop/sub_8" + input: "training/RMSprop/Square_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add_8" + op: "Add" + input: "training/RMSprop/mul_12" + input: "training/RMSprop/mul_13" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign_8" + op: "Assign" + input: "training/RMSprop/Variable_4" + input: "training/RMSprop/add_8" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_4" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/RMSprop/mul_14" + op: "Mul" + input: "RMSprop/lr/read" + input: "training/RMSprop/gradients/dense_1/BiasAdd_grad/BiasAddGrad" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Const_8" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 0.0 + } + } + } +} +node { + name: "training/RMSprop/Const_9" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: inf + } + } + } +} +node { + name: "training/RMSprop/clip_by_value_4/Minimum" + op: "Minimum" + input: "training/RMSprop/add_8" + input: "training/RMSprop/Const_9" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/clip_by_value_4" + op: "Maximum" + input: "training/RMSprop/clip_by_value_4/Minimum" + input: "training/RMSprop/Const_8" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Sqrt_4" + op: "Sqrt" + input: "training/RMSprop/clip_by_value_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/add_9/y" + op: "Const" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_FLOAT + tensor_shape { + } + float_val: 1.0000000116860974e-07 + } + } + } +} +node { + name: "training/RMSprop/add_9" + op: "Add" + input: "training/RMSprop/Sqrt_4" + input: "training/RMSprop/add_9/y" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/truediv_4" + op: "RealDiv" + input: "training/RMSprop/mul_14" + input: "training/RMSprop/add_9" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/sub_9" + op: "Sub" + input: "dense_1/bias/read" + input: "training/RMSprop/truediv_4" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +node { + name: "training/RMSprop/Assign_9" + op: "Assign" + input: "dense_1/bias" + input: "training/RMSprop/sub_9" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@dense_1/bias" + } + } + } + attr { + key: "use_locking" + value { + b: true + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "training/group_deps" + op: "NoOp" + input: "^loss/mul" + input: "^metrics/acc/Mean_1" + input: "^training/RMSprop/Assign" + input: "^training/RMSprop/AssignAdd" + input: "^training/RMSprop/Assign_1" + input: "^training/RMSprop/Assign_2" + input: "^training/RMSprop/Assign_3" + input: "^training/RMSprop/Assign_4" + input: "^training/RMSprop/Assign_5" + input: "^training/RMSprop/Assign_6" + input: "^training/RMSprop/Assign_7" + input: "^training/RMSprop/Assign_8" + input: "^training/RMSprop/Assign_9" +} +node { + name: "IsVariableInitialized_5" + op: "IsVariableInitialized" + input: "RMSprop/lr" + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/lr" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_6" + op: "IsVariableInitialized" + input: "RMSprop/rho" + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/rho" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_7" + op: "IsVariableInitialized" + input: "RMSprop/decay" + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/decay" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_8" + op: "IsVariableInitialized" + input: "RMSprop/iterations" + attr { + key: "_class" + value { + list { + s: "loc:@RMSprop/iterations" + } + } + } + attr { + key: "dtype" + value { + type: DT_INT64 + } + } +} +node { + name: "IsVariableInitialized_9" + op: "IsVariableInitialized" + input: "training/RMSprop/Variable" + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_10" + op: "IsVariableInitialized" + input: "training/RMSprop/Variable_1" + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_1" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_11" + op: "IsVariableInitialized" + input: "training/RMSprop/Variable_2" + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_2" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_12" + op: "IsVariableInitialized" + input: "training/RMSprop/Variable_3" + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_3" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "IsVariableInitialized_13" + op: "IsVariableInitialized" + input: "training/RMSprop/Variable_4" + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_4" + } + } + } + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } +} +node { + name: "init_1" + op: "NoOp" + input: "^RMSprop/decay/Assign" + input: "^RMSprop/iterations/Assign" + input: "^RMSprop/lr/Assign" + input: "^RMSprop/rho/Assign" + input: "^training/RMSprop/Variable/Assign" + input: "^training/RMSprop/Variable_1/Assign" + input: "^training/RMSprop/Variable_2/Assign" + input: "^training/RMSprop/Variable_3/Assign" + input: "^training/RMSprop/Variable_4/Assign" +} +node { + name: "Placeholder_5" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 13 + } + dim { + size: 60 + } + } + } + } +} +node { + name: "Assign_5" + op: "Assign" + input: "training/RMSprop/Variable" + input: "Placeholder_5" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "Placeholder_6" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 20 + } + dim { + size: 60 + } + } + } + } +} +node { + name: "Assign_6" + op: "Assign" + input: "training/RMSprop/Variable_1" + input: "Placeholder_6" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_1" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "Placeholder_7" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 60 + } + } + } + } +} +node { + name: "Assign_7" + op: "Assign" + input: "training/RMSprop/Variable_2" + input: "Placeholder_7" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_2" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "Placeholder_8" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 20 + } + dim { + size: 1 + } + } + } + } +} +node { + name: "Assign_8" + op: "Assign" + input: "training/RMSprop/Variable_3" + input: "Placeholder_8" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_3" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "Placeholder_9" + op: "Placeholder" + attr { + key: "dtype" + value { + type: DT_FLOAT + } + } + attr { + key: "shape" + value { + shape { + dim { + size: 1 + } + } + } + } +} +node { + name: "Assign_9" + op: "Assign" + input: "training/RMSprop/Variable_4" + input: "Placeholder_9" + attr { + key: "T" + value { + type: DT_FLOAT + } + } + attr { + key: "_class" + value { + list { + s: "loc:@training/RMSprop/Variable_4" + } + } + } + attr { + key: "use_locking" + value { + b: false + } + } + attr { + key: "validate_shape" + value { + b: true + } + } +} +node { + name: "net_output" + op: "Identity" + input: "dense_1/Sigmoid" + attr { + key: "T" + value { + type: DT_FLOAT + } + } +} +versions { + producer: 63 +} diff --git a/tng-computer/tng-computer.trained.txt b/tng-computer/tng-computer.trained.txt new file mode 100644 index 0000000..12abef9 --- /dev/null +++ b/tng-computer/tng-computer.trained.txt @@ -0,0 +1,2599 @@ +not-wake-samples/two/0132a06d_nohash_4.wav +not-wake-samples/two/80b8eab4_nohash_1.wav +not-wake-samples/two/c634a189_nohash_0.wav +not-wake-samples/two/6cb6eee7_nohash_0.wav +not-wake-samples/two/af7a8296_nohash_0.wav +not-wake-samples/two/7be9f58a_nohash_0.wav +not-wake-samples/two/2313e093_nohash_2.wav +not-wake-samples/two/adc216c5_nohash_0.wav +not-wake-samples/two/d8c52371_nohash_1.wav +not-wake-samples/two/ab71c9a7_nohash_1.wav +not-wake-samples/two/c79159aa_nohash_4.wav +not-wake-samples/two/876c84d6_nohash_0.wav +not-wake-samples/two/e53139ad_nohash_4.wav +not-wake-samples/two/c392e01d_nohash_0.wav +not-wake-samples/two/fb01a182_nohash_1.wav +not-wake-samples/two/840eab5a_nohash_0.wav +not-wake-samples/two/a6574a65_nohash_0.wav +not-wake-samples/two/29fb33da_nohash_2.wav +not-wake-samples/two/44c201dd_nohash_0.wav +not-wake-samples/two/50033893_nohash_0.wav +not-wake-samples/two/85b877b5_nohash_0.wav +not-wake-samples/two/d107dc42_nohash_0.wav +not-wake-samples/two/3983ba0d_nohash_0.wav +not-wake-samples/two/325a0c39_nohash_0.wav +not-wake-samples/two/82305c3a_nohash_0.wav +not-wake-samples/two/686d030b_nohash_3.wav +not-wake-samples/two/39a12648_nohash_3.wav +not-wake-samples/two/b9f46737_nohash_2.wav +not-wake-samples/two/7add4c5f_nohash_1.wav +not-wake-samples/two/229978fd_nohash_2.wav +not-wake-samples/two/686d030b_nohash_1.wav +not-wake-samples/two/5f47fdf9_nohash_0.wav +not-wake-samples/two/46a153d8_nohash_3.wav +not-wake-samples/two/9e6bb505_nohash_2.wav +not-wake-samples/two/e2286c18_nohash_0.wav +not-wake-samples/two/acfd3bc3_nohash_0.wav +not-wake-samples/two/50928b05_nohash_0.wav +not-wake-samples/two/0e17f595_nohash_0.wav +not-wake-samples/two/0ea0e2f4_nohash_0.wav +not-wake-samples/two/51055bda_nohash_1.wav +not-wake-samples/two/0b56bcfe_nohash_0.wav +not-wake-samples/two/964e8cfd_nohash_4.wav +not-wake-samples/two/8eb4a1bf_nohash_1.wav +not-wake-samples/two/3402e488_nohash_0.wav +not-wake-samples/two/a40c62f1_nohash_0.wav +not-wake-samples/two/551e42e8_nohash_0.wav +not-wake-samples/two/cd7f8c1b_nohash_4.wav +not-wake-samples/two/1eddce1d_nohash_3.wav +not-wake-samples/two/179a61b7_nohash_1.wav +not-wake-samples/two/32a19ecf_nohash_0.wav +not-wake-samples/two/3c257192_nohash_4.wav +not-wake-samples/two/d4082f3e_nohash_1.wav +not-wake-samples/two/f84762e5_nohash_0.wav +not-wake-samples/two/37dca74f_nohash_1.wav +not-wake-samples/two/65ec06e5_nohash_0.wav +not-wake-samples/two/099d52ad_nohash_2.wav +not-wake-samples/two/f00180d0_nohash_1.wav +not-wake-samples/two/a74f3917_nohash_0.wav +not-wake-samples/two/d8521ea0_nohash_0.wav +not-wake-samples/two/28ef2a01_nohash_0.wav +not-wake-samples/two/520e8c0e_nohash_1.wav +not-wake-samples/two/a6d586b7_nohash_0.wav +not-wake-samples/two/9e6bb505_nohash_0.wav +not-wake-samples/two/c33682f0_nohash_1.wav +not-wake-samples/two/1eddce1d_nohash_0.wav +not-wake-samples/two/91223b83_nohash_1.wav +not-wake-samples/two/bdb26021_nohash_0.wav +not-wake-samples/two/c5e3817f_nohash_1.wav +not-wake-samples/two/528f9242_nohash_2.wav +not-wake-samples/two/8ec6dab6_nohash_0.wav +not-wake-samples/two/8494fba8_nohash_0.wav +not-wake-samples/two/ad5aeec2_nohash_1.wav +not-wake-samples/two/bd061bef_nohash_1.wav +not-wake-samples/two/b665723d_nohash_0.wav +not-wake-samples/two/becd5a53_nohash_0.wav +not-wake-samples/two/099d52ad_nohash_3.wav +not-wake-samples/two/c1e0e8e3_nohash_1.wav +not-wake-samples/two/b959cd0c_nohash_2.wav +not-wake-samples/two/21832144_nohash_0.wav +not-wake-samples/two/6f7724f5_nohash_0.wav +not-wake-samples/two/5d0ab165_nohash_0.wav +not-wake-samples/two/7ea032f3_nohash_2.wav +not-wake-samples/two/ccea893d_nohash_3.wav +not-wake-samples/two/8f3f252c_nohash_0.wav +not-wake-samples/two/d8c314c0_nohash_0.wav +not-wake-samples/two/e0ff1e9c_nohash_0.wav +not-wake-samples/two/863880b7_nohash_1.wav +not-wake-samples/two/f92e49f3_nohash_0.wav +not-wake-samples/two/1b4c9b89_nohash_4.wav +not-wake-samples/two/c0fb6812_nohash_1.wav +not-wake-samples/two/122c5aa7_nohash_2.wav +not-wake-samples/two/106a6183_nohash_1.wav +not-wake-samples/two/716757ce_nohash_0.wav +not-wake-samples/two/c3538de1_nohash_0.wav +not-wake-samples/two/1eddce1d_nohash_1.wav +not-wake-samples/two/a827e3a1_nohash_0.wav +not-wake-samples/two/784e281a_nohash_0.wav +not-wake-samples/two/810c99be_nohash_0.wav +not-wake-samples/two/ae04cdbe_nohash_1.wav +not-wake-samples/two/8494fba8_nohash_2.wav +not-wake-samples/two/49af4432_nohash_2.wav +not-wake-samples/two/9aa21fa9_nohash_3.wav +not-wake-samples/two/15574821_nohash_2.wav +not-wake-samples/two/dabf67d9_nohash_0.wav +not-wake-samples/two/65040d9b_nohash_0.wav +not-wake-samples/two/d8521ea0_nohash_1.wav +not-wake-samples/two/eb3d8eb1_nohash_1.wav +not-wake-samples/two/09bcdc9d_nohash_0.wav +not-wake-samples/two/ee483d85_nohash_1.wav +not-wake-samples/two/72aa7259_nohash_0.wav +not-wake-samples/two/b959cd0c_nohash_4.wav +not-wake-samples/two/6078eb0d_nohash_0.wav +not-wake-samples/two/b9f46737_nohash_3.wav +not-wake-samples/two/2fa39636_nohash_0.wav +not-wake-samples/two/36746d7f_nohash_1.wav +not-wake-samples/two/2bdbe5f7_nohash_1.wav +not-wake-samples/two/aff582a1_nohash_4.wav +not-wake-samples/two/9ff2d2f4_nohash_4.wav +not-wake-samples/two/71f9bba8_nohash_1.wav +not-wake-samples/two/47565088_nohash_0.wav +not-wake-samples/two/3ca784ec_nohash_3.wav +not-wake-samples/two/6e41a77e_nohash_0.wav +not-wake-samples/two/15c563d7_nohash_0.wav +not-wake-samples/two/3143fdff_nohash_1.wav +not-wake-samples/two/0c2ca723_nohash_1.wav +not-wake-samples/two/7f74626f_nohash_0.wav +not-wake-samples/two/324210dd_nohash_0.wav +not-wake-samples/two/022cd682_nohash_1.wav +not-wake-samples/two/c0c0d87d_nohash_0.wav +not-wake-samples/two/571c044e_nohash_0.wav +not-wake-samples/two/28e47b1a_nohash_0.wav +not-wake-samples/two/35d1b6ee_nohash_0.wav +not-wake-samples/two/924c1a04_nohash_1.wav +not-wake-samples/two/c4533c47_nohash_0.wav +not-wake-samples/two/f875f965_nohash_0.wav +not-wake-samples/two/c6389ab0_nohash_0.wav +not-wake-samples/two/834f03fe_nohash_4.wav +not-wake-samples/two/211ccd2e_nohash_0.wav +not-wake-samples/two/b83c1acf_nohash_2.wav +not-wake-samples/two/11b1df78_nohash_1.wav +not-wake-samples/two/888a0c49_nohash_3.wav +not-wake-samples/two/a2473d62_nohash_1.wav +not-wake-samples/two/0ff728b5_nohash_4.wav +not-wake-samples/two/efbc3952_nohash_1.wav +not-wake-samples/two/2cf28b70_nohash_0.wav +not-wake-samples/two/bc196f81_nohash_1.wav +not-wake-samples/two/28ce0c58_nohash_3.wav +not-wake-samples/two/c661be6e_nohash_0.wav +not-wake-samples/two/7ca023e2_nohash_0.wav +not-wake-samples/two/4beff0c5_nohash_0.wav +not-wake-samples/two/686d030b_nohash_0.wav +not-wake-samples/two/6f2c6f7e_nohash_0.wav +not-wake-samples/two/9ab86dd0_nohash_0.wav +not-wake-samples/two/2da58b32_nohash_0.wav +not-wake-samples/two/2e30f9a5_nohash_0.wav +not-wake-samples/two/38d78313_nohash_1.wav +not-wake-samples/two/fd395b74_nohash_3.wav +not-wake-samples/two/c245d3d7_nohash_0.wav +not-wake-samples/two/21832144_nohash_1.wav +not-wake-samples/two/aef8dcf5_nohash_0.wav +not-wake-samples/two/f6af2457_nohash_0.wav +not-wake-samples/two/434a267c_nohash_0.wav +not-wake-samples/two/fb2f3242_nohash_0.wav +not-wake-samples/two/7c9b43f0_nohash_0.wav +not-wake-samples/two/64f83f0e_nohash_0.wav +not-wake-samples/two/9d7036f9_nohash_3.wav +not-wake-samples/two/8dd24423_nohash_0.wav +not-wake-samples/two/46a153d8_nohash_2.wav +not-wake-samples/two/71bf8f48_nohash_0.wav +not-wake-samples/two/f9ebdba0_nohash_0.wav +not-wake-samples/two/d6b155a5_nohash_0.wav +not-wake-samples/two/d9e9f554_nohash_0.wav +not-wake-samples/two/df1d5024_nohash_4.wav +not-wake-samples/two/6f9088d7_nohash_0.wav +not-wake-samples/two/c22d3f18_nohash_0.wav +not-wake-samples/two/92a9c5e6_nohash_2.wav +not-wake-samples/two/37dca74f_nohash_3.wav +not-wake-samples/two/9080f6d3_nohash_1.wav +not-wake-samples/two/11860c84_nohash_0.wav +not-wake-samples/two/5fc3ed24_nohash_2.wav +not-wake-samples/two/ab71c9a7_nohash_4.wav +not-wake-samples/two/5eb5fc74_nohash_1.wav +not-wake-samples/two/df1d5024_nohash_3.wav +not-wake-samples/two/d4082f3e_nohash_0.wav +not-wake-samples/two/563aa4e6_nohash_0.wav +not-wake-samples/two/7ea032f3_nohash_3.wav +not-wake-samples/two/1daa5ada_nohash_0.wav +not-wake-samples/two/dca2797e_nohash_3.wav +not-wake-samples/two/5af0ca83_nohash_0.wav +not-wake-samples/two/bd8412df_nohash_1.wav +not-wake-samples/two/28ed6bc9_nohash_3.wav +not-wake-samples/two/c9b653a0_nohash_3.wav +not-wake-samples/two/ecef25ba_nohash_0.wav +not-wake-samples/two/151bfb79_nohash_1.wav +not-wake-samples/two/03cf93b1_nohash_2.wav +not-wake-samples/two/9efe5140_nohash_0.wav +not-wake-samples/two/735845ab_nohash_3.wav +not-wake-samples/two/f5c3de1b_nohash_0.wav +not-wake-samples/two/63996b7c_nohash_0.wav +not-wake-samples/two/b959cd0c_nohash_0.wav +not-wake-samples/two/ad63d93c_nohash_3.wav +not-wake-samples/two/28ed6bc9_nohash_1.wav +not-wake-samples/two/9efe5140_nohash_1.wav +not-wake-samples/two/eb0676ec_nohash_4.wav +not-wake-samples/two/b2e2773a_nohash_0.wav +not-wake-samples/two/dc2222d7_nohash_0.wav +not-wake-samples/two/dce05676_nohash_0.wav +not-wake-samples/two/12c206ea_nohash_0.wav +not-wake-samples/two/106a6183_nohash_4.wav +not-wake-samples/two/1338a799_nohash_2.wav +not-wake-samples/two/8281a2a8_nohash_3.wav +not-wake-samples/two/c120e80e_nohash_3.wav +not-wake-samples/two/4d9e07cf_nohash_0.wav +not-wake-samples/two/dcc012ec_nohash_2.wav +not-wake-samples/two/2903efb3_nohash_0.wav +not-wake-samples/two/38c388bc_nohash_2.wav +not-wake-samples/two/030ec18b_nohash_2.wav +not-wake-samples/two/7ab5b8f7_nohash_1.wav +not-wake-samples/two/421ed23f_nohash_0.wav +not-wake-samples/two/7dc50b88_nohash_0.wav +not-wake-samples/two/7e783e3f_nohash_0.wav +not-wake-samples/two/67fcdb05_nohash_2.wav +not-wake-samples/two/9d7036f9_nohash_0.wav +not-wake-samples/two/83c9e7e6_nohash_0.wav +not-wake-samples/two/7fc74fbe_nohash_0.wav +not-wake-samples/two/aff582a1_nohash_1.wav +not-wake-samples/two/5fadb538_nohash_1.wav +not-wake-samples/two/ce7a8e92_nohash_0.wav +not-wake-samples/two/e4b02540_nohash_2.wav +not-wake-samples/two/e41e41f7_nohash_1.wav +not-wake-samples/two/c1b7c224_nohash_1.wav +not-wake-samples/two/5f814c23_nohash_2.wav +not-wake-samples/two/f06190c1_nohash_1.wav +not-wake-samples/two/7ff4fc72_nohash_0.wav +not-wake-samples/two/7f17667c_nohash_0.wav +not-wake-samples/two/31d31fa0_nohash_1.wav +not-wake-samples/two/712e4d58_nohash_1.wav +not-wake-samples/two/acde7e73_nohash_0.wav +not-wake-samples/two/eb0676ec_nohash_3.wav +not-wake-samples/two/e8e960fd_nohash_0.wav +not-wake-samples/two/9f869f70_nohash_0.wav +not-wake-samples/two/9ce7a419_nohash_1.wav +not-wake-samples/two/63996b7c_nohash_1.wav +not-wake-samples/two/6c0f6493_nohash_3.wav +not-wake-samples/two/62ff07ef_nohash_1.wav +not-wake-samples/two/48bfde8e_nohash_0.wav +not-wake-samples/two/9f63152b_nohash_0.wav +not-wake-samples/two/962f27eb_nohash_0.wav +not-wake-samples/two/c44d2a58_nohash_0.wav +not-wake-samples/two/ec5ab5d5_nohash_0.wav +not-wake-samples/two/cb2929ce_nohash_5.wav +not-wake-samples/two/4ec7d027_nohash_1.wav +not-wake-samples/two/5705a0f9_nohash_1.wav +not-wake-samples/two/15574821_nohash_1.wav +not-wake-samples/two/7f74626f_nohash_3.wav +not-wake-samples/two/9886d8bf_nohash_4.wav +not-wake-samples/two/8fce59ff_nohash_0.wav +not-wake-samples/two/92a9c5e6_nohash_4.wav +not-wake-samples/two/e855b8f1_nohash_0.wav +not-wake-samples/two/b7669804_nohash_0.wav +not-wake-samples/two/1c1060b1_nohash_0.wav +not-wake-samples/two/afabfa0e_nohash_0.wav +not-wake-samples/two/840c366d_nohash_1.wav +not-wake-samples/two/dabd70c2_nohash_2.wav +not-wake-samples/two/1e412fac_nohash_0.wav +not-wake-samples/two/5c39594f_nohash_3.wav +not-wake-samples/two/fa446c16_nohash_0.wav +not-wake-samples/two/748cb308_nohash_1.wav +not-wake-samples/two/c099668c_nohash_0.wav +not-wake-samples/two/51055bda_nohash_2.wav +not-wake-samples/two/6f9088d7_nohash_1.wav +not-wake-samples/two/9e42ae25_nohash_0.wav +not-wake-samples/two/46a153d8_nohash_0.wav +not-wake-samples/two/4634529e_nohash_0.wav +not-wake-samples/two/99e6cab8_nohash_0.wav +not-wake-samples/two/0a7c2a8d_nohash_0.wav +not-wake-samples/two/589bce2c_nohash_1.wav +not-wake-samples/two/8523766b_nohash_1.wav +not-wake-samples/two/fb2f3242_nohash_1.wav +not-wake-samples/two/a9b574b3_nohash_1.wav +not-wake-samples/two/989a2213_nohash_0.wav +not-wake-samples/two/742d6431_nohash_2.wav +not-wake-samples/two/471a0925_nohash_4.wav +not-wake-samples/two/99a9b015_nohash_3.wav +not-wake-samples/two/3ac2e76f_nohash_0.wav +not-wake-samples/two/15c563d7_nohash_4.wav +not-wake-samples/two/5a0bc987_nohash_1.wav +not-wake-samples/two/708a9569_nohash_0.wav +not-wake-samples/two/af7a8296_nohash_2.wav +not-wake-samples/two/96a48d28_nohash_3.wav +not-wake-samples/two/c79159aa_nohash_1.wav +not-wake-samples/two/794cdfc5_nohash_0.wav +not-wake-samples/two/981e2a16_nohash_0.wav +not-wake-samples/two/bd11c654_nohash_0.wav +not-wake-samples/two/a1cff772_nohash_0.wav +not-wake-samples/two/4b39347d_nohash_0.wav +not-wake-samples/two/a19452d5_nohash_0.wav +not-wake-samples/two/2dce72b3_nohash_0.wav +not-wake-samples/two/093f65a1_nohash_1.wav +not-wake-samples/two/43b85b64_nohash_0.wav +not-wake-samples/two/24befdb3_nohash_0.wav +not-wake-samples/two/47565088_nohash_1.wav +not-wake-samples/two/26e9ae6b_nohash_2.wav +not-wake-samples/two/bab36420_nohash_1.wav +not-wake-samples/two/21e8c417_nohash_1.wav +not-wake-samples/two/9d7036f9_nohash_2.wav +not-wake-samples/two/25132942_nohash_4.wav +not-wake-samples/two/a19452d5_nohash_1.wav +not-wake-samples/two/bb31b82b_nohash_0.wav +not-wake-samples/two/d4082f3e_nohash_4.wav +not-wake-samples/two/bdee441c_nohash_0.wav +not-wake-samples/two/3ca784ec_nohash_1.wav +not-wake-samples/two/a1dd919f_nohash_1.wav +not-wake-samples/two/46a153d8_nohash_4.wav +not-wake-samples/two/c79159aa_nohash_3.wav +not-wake-samples/two/8d4cdc60_nohash_0.wav +not-wake-samples/two/39c13eed_nohash_2.wav +not-wake-samples/two/84d1e469_nohash_1.wav +not-wake-samples/two/ed0720f1_nohash_0.wav +not-wake-samples/two/37d38e44_nohash_1.wav +not-wake-samples/two/1b4c9b89_nohash_0.wav +not-wake-samples/two/413997c1_nohash_0.wav +not-wake-samples/two/a527cb3c_nohash_0.wav +not-wake-samples/two/079d1020_nohash_3.wav +not-wake-samples/two/c86d4fd4_nohash_1.wav +not-wake-samples/two/8ec6dab6_nohash_1.wav +not-wake-samples/two/f5d09ebd_nohash_1.wav +not-wake-samples/two/e98cb283_nohash_0.wav +not-wake-samples/two/a4c938ce_nohash_1.wav +not-wake-samples/two/9a7c1f83_nohash_2.wav +not-wake-samples/two/77def3ee_nohash_0.wav +not-wake-samples/two/589bce2c_nohash_0.wav +not-wake-samples/two/b5552931_nohash_4.wav +not-wake-samples/two/2c7c33e8_nohash_0.wav +not-wake-samples/two/01bb6a2a_nohash_3.wav +not-wake-samples/two/ec5ab5d5_nohash_1.wav +not-wake-samples/two/02746d24_nohash_1.wav +not-wake-samples/two/f3210686_nohash_1.wav +not-wake-samples/two/7cfb1618_nohash_0.wav +not-wake-samples/two/5e033479_nohash_1.wav +not-wake-samples/two/563aa4e6_nohash_1.wav +not-wake-samples/two/3389305e_nohash_1.wav +not-wake-samples/two/37b03ab1_nohash_1.wav +not-wake-samples/two/c634a189_nohash_2.wav +not-wake-samples/two/ab00c4b2_nohash_0.wav +not-wake-samples/two/97f4c236_nohash_2.wav +not-wake-samples/two/00b01445_nohash_1.wav +not-wake-samples/two/78884794_nohash_0.wav +not-wake-samples/two/01bb6a2a_nohash_1.wav +not-wake-samples/two/019fa366_nohash_0.wav +not-wake-samples/two/d4082f3e_nohash_2.wav +not-wake-samples/two/2796ac50_nohash_0.wav +not-wake-samples/two/28ed6bc9_nohash_4.wav +not-wake-samples/two/e0315cf6_nohash_4.wav +not-wake-samples/two/4a1e736b_nohash_4.wav +not-wake-samples/two/1cec8d71_nohash_1.wav +not-wake-samples/two/c1d39ce8_nohash_3.wav +not-wake-samples/two/471a0925_nohash_3.wav +not-wake-samples/two/6e2ef3d5_nohash_0.wav +not-wake-samples/two/aa753bb9_nohash_1.wav +not-wake-samples/two/b1426003_nohash_0.wav +not-wake-samples/two/a879a2c3_nohash_0.wav +not-wake-samples/two/62581901_nohash_0.wav +not-wake-samples/two/f0ac2522_nohash_0.wav +not-wake-samples/two/a4e8a997_nohash_0.wav +not-wake-samples/two/de08912f_nohash_0.wav +not-wake-samples/two/cd85758f_nohash_0.wav +not-wake-samples/two/611d2b50_nohash_4.wav +not-wake-samples/two/6f2f57c1_nohash_0.wav +not-wake-samples/two/29b81b73_nohash_0.wav +not-wake-samples/two/118261a9_nohash_0.wav +not-wake-samples/two/ab71c9a7_nohash_2.wav +not-wake-samples/two/b9515bf3_nohash_4.wav +not-wake-samples/two/ba59cab3_nohash_0.wav +not-wake-samples/two/cb2929ce_nohash_2.wav +not-wake-samples/two/172dc2b0_nohash_1.wav +not-wake-samples/two/74fc51e5_nohash_0.wav +not-wake-samples/two/620ff0fa_nohash_0.wav +not-wake-samples/two/7e4fa1d8_nohash_2.wav +not-wake-samples/two/988e2f9a_nohash_0.wav +not-wake-samples/two/0eb48e10_nohash_0.wav +not-wake-samples/two/f810e799_nohash_1.wav +not-wake-samples/two/b5552931_nohash_3.wav +not-wake-samples/two/2bfe70ef_nohash_0.wav +not-wake-samples/two/cc6ee39b_nohash_4.wav +not-wake-samples/two/6d1dcca6_nohash_0.wav +not-wake-samples/two/0132a06d_nohash_1.wav +not-wake-samples/two/d5c41d6a_nohash_0.wav +not-wake-samples/two/73af0c50_nohash_2.wav +not-wake-samples/two/b2e2773a_nohash_2.wav +not-wake-samples/two/5c39594f_nohash_1.wav +not-wake-samples/two/21832144_nohash_3.wav +not-wake-samples/two/079d1020_nohash_0.wav +not-wake-samples/two/9ce7a419_nohash_0.wav +not-wake-samples/two/6c6aa323_nohash_0.wav +not-wake-samples/two/238c112c_nohash_1.wav +not-wake-samples/two/5fadb538_nohash_0.wav +not-wake-samples/two/ae82c78c_nohash_0.wav +not-wake-samples/two/fce96bac_nohash_0.wav +not-wake-samples/two/cd7f8c1b_nohash_3.wav +not-wake-samples/two/3e31dffe_nohash_3.wav +not-wake-samples/two/1338a799_nohash_3.wav +not-wake-samples/two/9a69672b_nohash_2.wav +not-wake-samples/two/118261a9_nohash_1.wav +not-wake-samples/two/70a00e98_nohash_3.wav +not-wake-samples/two/a4e8a997_nohash_1.wav +not-wake-samples/two/b0f24c9b_nohash_0.wav +not-wake-samples/two/af30314d_nohash_0.wav +not-wake-samples/two/7014b07e_nohash_0.wav +not-wake-samples/two/39a12648_nohash_2.wav +not-wake-samples/two/c0c0d87d_nohash_1.wav +not-wake-samples/two/c9b653a0_nohash_4.wav +not-wake-samples/two/dc269564_nohash_0.wav +not-wake-samples/two/1338a799_nohash_0.wav +not-wake-samples/two/49af4432_nohash_1.wav +not-wake-samples/two/2296b1af_nohash_0.wav +not-wake-samples/two/dbb40d24_nohash_1.wav +not-wake-samples/two/b544d4fd_nohash_0.wav +not-wake-samples/two/179a61b7_nohash_4.wav +not-wake-samples/two/b5552931_nohash_0.wav +not-wake-samples/two/105a0eea_nohash_1.wav +not-wake-samples/two/94e6864f_nohash_1.wav +not-wake-samples/two/7b2e879e_nohash_0.wav +not-wake-samples/two/b16f2d0d_nohash_0.wav +not-wake-samples/two/fa446c16_nohash_1.wav +not-wake-samples/two/ab7b5acd_nohash_1.wav +not-wake-samples/two/f953e1af_nohash_0.wav +not-wake-samples/two/44dad20e_nohash_1.wav +not-wake-samples/two/39a45230_nohash_0.wav +not-wake-samples/two/15574821_nohash_0.wav +not-wake-samples/two/bdee441c_nohash_4.wav +not-wake-samples/two/479e64cc_nohash_0.wav +not-wake-samples/two/122c5aa7_nohash_4.wav +not-wake-samples/two/15c563d7_nohash_1.wav +not-wake-samples/two/2df590cd_nohash_0.wav +not-wake-samples/two/d6b155a5_nohash_1.wav +not-wake-samples/two/99081f4d_nohash_1.wav +not-wake-samples/two/d1214f15_nohash_1.wav +not-wake-samples/two/f6581345_nohash_0.wav +not-wake-samples/two/2dcb6848_nohash_1.wav +not-wake-samples/two/8549f25d_nohash_0.wav +not-wake-samples/two/7192fddc_nohash_1.wav +not-wake-samples/two/8f811bbc_nohash_1.wav +not-wake-samples/two/d90b4138_nohash_0.wav +not-wake-samples/two/122c5aa7_nohash_1.wav +not-wake-samples/two/b9f46737_nohash_0.wav +not-wake-samples/two/bf5d409d_nohash_0.wav +not-wake-samples/two/300384f0_nohash_3.wav +not-wake-samples/two/1746d7b6_nohash_0.wav +not-wake-samples/two/19e98e89_nohash_1.wav +not-wake-samples/two/dea820ce_nohash_3.wav +not-wake-samples/two/e5dadd24_nohash_1.wav +not-wake-samples/two/28e47b1a_nohash_3.wav +not-wake-samples/two/16d41d07_nohash_0.wav +not-wake-samples/two/af7a8296_nohash_1.wav +not-wake-samples/two/d197e3ae_nohash_0.wav +not-wake-samples/two/c1d39ce8_nohash_9.wav +not-wake-samples/two/146d97db_nohash_1.wav +not-wake-samples/two/6e41a77e_nohash_1.wav +not-wake-samples/two/7cb5c0b7_nohash_0.wav +not-wake-samples/two/dec73123_nohash_0.wav +not-wake-samples/two/106a6183_nohash_0.wav +not-wake-samples/two/8e884ec4_nohash_0.wav +not-wake-samples/two/7e6bd776_nohash_0.wav +not-wake-samples/two/f19c1390_nohash_3.wav +not-wake-samples/two/a1533da4_nohash_0.wav +not-wake-samples/two/38d78313_nohash_4.wav +not-wake-samples/two/c0fb6812_nohash_0.wav +not-wake-samples/two/022cd682_nohash_0.wav +not-wake-samples/two/1b4c9b89_nohash_1.wav +not-wake-samples/two/479e64cc_nohash_1.wav +not-wake-samples/two/ac7840d8_nohash_2.wav +not-wake-samples/two/2df590cd_nohash_2.wav +not-wake-samples/two/7fd25f7c_nohash_4.wav +not-wake-samples/two/eb0676ec_nohash_1.wav +not-wake-samples/two/656e8bb3_nohash_0.wav +not-wake-samples/two/70a00e98_nohash_4.wav +not-wake-samples/two/efa16ffd_nohash_1.wav +not-wake-samples/two/86fa2dcd_nohash_0.wav +not-wake-samples/two/31e686d2_nohash_0.wav +not-wake-samples/two/d926bb17_nohash_1.wav +not-wake-samples/two/7d8babdb_nohash_0.wav +not-wake-samples/two/2039b9c1_nohash_1.wav +not-wake-samples/two/aa62fdad_nohash_0.wav +not-wake-samples/two/8fce59ff_nohash_1.wav +not-wake-samples/two/6272b231_nohash_0.wav +not-wake-samples/two/9b402bc2_nohash_0.wav +not-wake-samples/two/5c39594f_nohash_2.wav +not-wake-samples/two/7fd25f7c_nohash_3.wav +not-wake-samples/two/af405b69_nohash_1.wav +not-wake-samples/two/5fadb538_nohash_3.wav +not-wake-samples/two/735845ab_nohash_1.wav +not-wake-samples/two/f5733968_nohash_1.wav +not-wake-samples/two/7add4c5f_nohash_2.wav +not-wake-samples/two/d0f7bef5_nohash_0.wav +not-wake-samples/two/c22d3f18_nohash_2.wav +not-wake-samples/two/21307344_nohash_0.wav +not-wake-samples/two/c4500713_nohash_0.wav +not-wake-samples/two/bab36420_nohash_0.wav +not-wake-samples/two/32efce64_nohash_0.wav +not-wake-samples/two/b25b6065_nohash_0.wav +not-wake-samples/two/735845ab_nohash_0.wav +not-wake-samples/two/47d01978_nohash_0.wav +not-wake-samples/two/e6db3894_nohash_1.wav +not-wake-samples/two/8e05039f_nohash_1.wav +not-wake-samples/two/ced835d3_nohash_3.wav +not-wake-samples/two/03cf93b1_nohash_0.wav +not-wake-samples/two/538e1856_nohash_0.wav +not-wake-samples/two/50a8ef27_nohash_0.wav +not-wake-samples/two/b43de700_nohash_0.wav +not-wake-samples/two/c205e625_nohash_0.wav +not-wake-samples/two/c53b335a_nohash_1.wav +not-wake-samples/two/8b775397_nohash_2.wav +not-wake-samples/two/1cec8d71_nohash_0.wav +not-wake-samples/two/8e05039f_nohash_3.wav +not-wake-samples/two/c120e80e_nohash_2.wav +not-wake-samples/two/1a6eca98_nohash_0.wav +not-wake-samples/two/3a789a0d_nohash_0.wav +not-wake-samples/two/105e72bb_nohash_0.wav +not-wake-samples/two/7ea032f3_nohash_4.wav +not-wake-samples/two/31267b59_nohash_0.wav +not-wake-samples/two/ac7840d8_nohash_1.wav +not-wake-samples/two/57cb3575_nohash_0.wav +not-wake-samples/two/726382d6_nohash_1.wav +not-wake-samples/two/01bb6a2a_nohash_0.wav +not-wake-samples/two/b97c9f77_nohash_0.wav +not-wake-samples/two/520e8c0e_nohash_0.wav +not-wake-samples/two/f17be97f_nohash_1.wav +not-wake-samples/two/db9cd41d_nohash_1.wav +not-wake-samples/two/5e3dde6b_nohash_3.wav +not-wake-samples/two/de650823_nohash_0.wav +not-wake-samples/two/f2dd248e_nohash_0.wav +not-wake-samples/two/dcc012ec_nohash_0.wav +not-wake-samples/two/b7a0754f_nohash_3.wav +not-wake-samples/two/db9cd41d_nohash_2.wav +not-wake-samples/two/d7529c0c_nohash_0.wav +not-wake-samples/two/3bc21161_nohash_2.wav +not-wake-samples/two/cb2929ce_nohash_9.wav +not-wake-samples/two/a1cff772_nohash_2.wav +not-wake-samples/two/c0e8f5a1_nohash_0.wav +not-wake-samples/two/0137b3f4_nohash_2.wav +not-wake-samples/two/079d1020_nohash_1.wav +not-wake-samples/two/4f256313_nohash_1.wav +not-wake-samples/two/28e47b1a_nohash_1.wav +not-wake-samples/two/25132942_nohash_1.wav +not-wake-samples/two/50a7d406_nohash_1.wav +not-wake-samples/two/a1c63f25_nohash_0.wav +not-wake-samples/two/f88f97a7_nohash_0.wav +not-wake-samples/two/772db621_nohash_0.wav +not-wake-samples/two/16db1582_nohash_0.wav +not-wake-samples/two/8a56f36e_nohash_0.wav +not-wake-samples/two/c86d4fd4_nohash_0.wav +not-wake-samples/two/951cac20_nohash_0.wav +not-wake-samples/two/6727b579_nohash_4.wav +not-wake-samples/two/650daf8e_nohash_1.wav +not-wake-samples/two/b7669804_nohash_1.wav +not-wake-samples/two/ef2578c0_nohash_0.wav +not-wake-samples/two/1a673010_nohash_0.wav +not-wake-samples/two/435f9f9e_nohash_0.wav +not-wake-samples/two/363c6bad_nohash_0.wav +not-wake-samples/two/1daa5ada_nohash_1.wav +not-wake-samples/two/28612180_nohash_1.wav +not-wake-samples/two/c948d727_nohash_0.wav +not-wake-samples/two/d5ca80c6_nohash_2.wav +not-wake-samples/two/53578f4e_nohash_1.wav +not-wake-samples/two/3d53244b_nohash_0.wav +not-wake-samples/two/f92e49f3_nohash_2.wav +not-wake-samples/two/c5c60d8d_nohash_4.wav +not-wake-samples/two/c4e1f6e0_nohash_0.wav +not-wake-samples/two/d430b3cc_nohash_0.wav +not-wake-samples/two/c6ee87a7_nohash_3.wav +not-wake-samples/two/300384f0_nohash_0.wav +not-wake-samples/two/97101ef3_nohash_0.wav +not-wake-samples/two/dbaf8fc6_nohash_0.wav +not-wake-samples/two/1bb574f9_nohash_0.wav +not-wake-samples/two/4a4e28f1_nohash_0.wav +not-wake-samples/two/7cf14c54_nohash_0.wav +not-wake-samples/two/a1a59b72_nohash_1.wav +not-wake-samples/two/aba19127_nohash_0.wav +not-wake-samples/two/3565ca83_nohash_1.wav +not-wake-samples/two/837f7378_nohash_0.wav +not-wake-samples/two/17c94b23_nohash_1.wav +not-wake-samples/two/eb0676ec_nohash_0.wav +not-wake-samples/two/afbec28d_nohash_0.wav +not-wake-samples/two/637c702a_nohash_0.wav +not-wake-samples/two/9735764a_nohash_1.wav +not-wake-samples/two/c578beb0_nohash_0.wav +not-wake-samples/two/37d38e44_nohash_0.wav +not-wake-samples/two/742d6431_nohash_3.wav +not-wake-samples/two/6c0f6493_nohash_0.wav +not-wake-samples/two/f0ebef1b_nohash_1.wav +not-wake-samples/two/4def68db_nohash_0.wav +not-wake-samples/two/25132942_nohash_2.wav +not-wake-samples/two/e91d173e_nohash_0.wav +not-wake-samples/two/fb9d6d23_nohash_1.wav +not-wake-samples/two/9dcfba4b_nohash_0.wav +not-wake-samples/two/24ad3ebe_nohash_0.wav +not-wake-samples/two/763188c4_nohash_2.wav +not-wake-samples/two/888a0c49_nohash_1.wav +not-wake-samples/two/d0faf7e4_nohash_3.wav +not-wake-samples/two/7ab5b8f7_nohash_0.wav +not-wake-samples/two/7ff4fc72_nohash_1.wav +not-wake-samples/two/bbd0bbd0_nohash_3.wav +not-wake-samples/two/b8c48ffb_nohash_0.wav +not-wake-samples/two/dbb40d24_nohash_4.wav +not-wake-samples/two/b31ad508_nohash_1.wav +not-wake-samples/two/ec74a8a5_nohash_0.wav +not-wake-samples/two/0ff728b5_nohash_3.wav +not-wake-samples/two/f47d644e_nohash_1.wav +not-wake-samples/two/2bdbe5f7_nohash_4.wav +not-wake-samples/two/2f813234_nohash_1.wav +not-wake-samples/two/1f653d27_nohash_0.wav +not-wake-samples/two/8c3c4715_nohash_1.wav +not-wake-samples/two/b9515bf3_nohash_1.wav +not-wake-samples/two/e1469561_nohash_4.wav +not-wake-samples/two/b5aacf2c_nohash_0.wav +not-wake-samples/two/ad9de4dd_nohash_0.wav +not-wake-samples/two/dabd70c2_nohash_0.wav +not-wake-samples/two/50928b05_nohash_1.wav +not-wake-samples/two/d7ca14ef_nohash_0.wav +not-wake-samples/two/57b38f48_nohash_0.wav +not-wake-samples/two/b9db6e42_nohash_0.wav +not-wake-samples/two/ad1429cf_nohash_0.wav +not-wake-samples/two/bf70feda_nohash_0.wav +not-wake-samples/two/173ae793_nohash_0.wav +not-wake-samples/two/69f609ec_nohash_0.wav +not-wake-samples/two/0b56bcfe_nohash_1.wav +not-wake-samples/two/d5ca80c6_nohash_0.wav +not-wake-samples/two/ca48dc76_nohash_0.wav +not-wake-samples/two/3cbd76a3_nohash_2.wav +not-wake-samples/two/5fe4a278_nohash_0.wav +not-wake-samples/two/be7a5b2d_nohash_4.wav +not-wake-samples/two/c93d5e22_nohash_2.wav +not-wake-samples/two/5fb88f4c_nohash_0.wav +not-wake-samples/two/94de6a6a_nohash_0.wav +not-wake-samples/two/f6af2457_nohash_1.wav +not-wake-samples/two/be7a5b2d_nohash_0.wav +not-wake-samples/two/8eb4a1bf_nohash_4.wav +not-wake-samples/two/ac7840d8_nohash_0.wav +not-wake-samples/two/21832144_nohash_4.wav +not-wake-samples/two/7e4fa1d8_nohash_0.wav +not-wake-samples/two/982babaf_nohash_0.wav +not-wake-samples/two/8c7c9168_nohash_0.wav +not-wake-samples/two/b9515bf3_nohash_2.wav +not-wake-samples/two/0132a06d_nohash_3.wav +not-wake-samples/two/03c96658_nohash_0.wav +not-wake-samples/two/d0ce2418_nohash_1.wav +not-wake-samples/two/0c40e715_nohash_0.wav +not-wake-samples/two/ac899eb7_nohash_2.wav +not-wake-samples/two/ced835d3_nohash_4.wav +not-wake-samples/two/229978fd_nohash_3.wav +not-wake-samples/two/187af8be_nohash_0.wav +not-wake-samples/two/3b853f44_nohash_0.wav +not-wake-samples/two/789e4ee7_nohash_2.wav +not-wake-samples/two/8f4c551f_nohash_4.wav +not-wake-samples/two/c24d96eb_nohash_2.wav +not-wake-samples/two/90b0b91a_nohash_1.wav +not-wake-samples/two/8281a2a8_nohash_1.wav +not-wake-samples/two/7106d229_nohash_2.wav +not-wake-samples/two/437455be_nohash_0.wav +not-wake-samples/two/44715c1c_nohash_0.wav +not-wake-samples/two/9d7036f9_nohash_1.wav +not-wake-samples/two/dbb7723a_nohash_0.wav +not-wake-samples/two/cc6ee39b_nohash_3.wav +not-wake-samples/two/ec21c46b_nohash_1.wav +not-wake-samples/two/c1d39ce8_nohash_4.wav +not-wake-samples/two/c5570933_nohash_0.wav +not-wake-samples/two/3c165869_nohash_0.wav +not-wake-samples/two/d98f6043_nohash_0.wav +not-wake-samples/two/30065f33_nohash_2.wav +not-wake-samples/two/173e6bbf_nohash_0.wav +not-wake-samples/two/069ab0d5_nohash_1.wav +not-wake-samples/two/4249c833_nohash_1.wav +not-wake-samples/two/97f4c236_nohash_0.wav +not-wake-samples/two/acde7e73_nohash_2.wav +not-wake-samples/two/e7ebf59c_nohash_0.wav +not-wake-samples/two/a2fefcb4_nohash_1.wav +not-wake-samples/two/e652590d_nohash_0.wav +not-wake-samples/two/2d92f18b_nohash_1.wav +not-wake-samples/two/c634a189_nohash_4.wav +not-wake-samples/two/77655bdf_nohash_0.wav +not-wake-samples/two/190821dc_nohash_1.wav +not-wake-samples/two/24c9f572_nohash_0.wav +not-wake-samples/two/da76aa58_nohash_0.wav +not-wake-samples/two/86478fab_nohash_0.wav +not-wake-samples/two/df038de4_nohash_1.wav +not-wake-samples/two/93ec8b84_nohash_0.wav +not-wake-samples/two/76b58705_nohash_0.wav +not-wake-samples/two/28460a60_nohash_0.wav +not-wake-samples/two/38d78313_nohash_2.wav +not-wake-samples/two/c5c60d8d_nohash_3.wav +not-wake-samples/two/f19c1390_nohash_0.wav +not-wake-samples/two/dca2797e_nohash_1.wav +not-wake-samples/two/bed06fac_nohash_0.wav +not-wake-samples/two/3c165869_nohash_1.wav +not-wake-samples/two/cb8f8307_nohash_4.wav +not-wake-samples/two/3389305e_nohash_0.wav +not-wake-samples/two/96a48d28_nohash_4.wav +not-wake-samples/two/38c388bc_nohash_1.wav +not-wake-samples/two/0132a06d_nohash_0.wav +not-wake-samples/two/4f2be90f_nohash_0.wav +not-wake-samples/two/a1cff772_nohash_1.wav +not-wake-samples/two/d53e25ba_nohash_0.wav +not-wake-samples/two/b8872c20_nohash_0.wav +not-wake-samples/two/2f813234_nohash_0.wav +not-wake-samples/two/34881b10_nohash_0.wav +not-wake-samples/two/f428ca69_nohash_0.wav +not-wake-samples/two/8134f43f_nohash_4.wav +not-wake-samples/two/03cf93b1_nohash_3.wav +not-wake-samples/two/fd395b74_nohash_2.wav +not-wake-samples/two/fd395b74_nohash_1.wav +not-wake-samples/two/8eb4a1bf_nohash_2.wav +not-wake-samples/two/c1d39ce8_nohash_7.wav +not-wake-samples/two/39a6b995_nohash_0.wav +not-wake-samples/two/59c3a7f2_nohash_0.wav +not-wake-samples/two/7846fd85_nohash_1.wav +not-wake-samples/two/10627519_nohash_0.wav +not-wake-samples/two/4f256313_nohash_0.wav +not-wake-samples/two/25c14394_nohash_0.wav +not-wake-samples/two/1c6e5447_nohash_0.wav +not-wake-samples/two/c93d5e22_nohash_0.wav +not-wake-samples/two/5c8af87a_nohash_2.wav +not-wake-samples/two/1b4c9b89_nohash_2.wav +not-wake-samples/two/2510c044_nohash_0.wav +not-wake-samples/two/24befdb3_nohash_3.wav +not-wake-samples/two/5b09db89_nohash_2.wav +not-wake-samples/two/37dca74f_nohash_0.wav +not-wake-samples/two/c9b653a0_nohash_1.wav +not-wake-samples/two/a6d586b7_nohash_3.wav +not-wake-samples/two/85b877b5_nohash_1.wav +not-wake-samples/two/300384f0_nohash_2.wav +not-wake-samples/two/533c6564_nohash_0.wav +not-wake-samples/two/94e6864f_nohash_2.wav +not-wake-samples/two/d94eb94f_nohash_0.wav +not-wake-samples/two/66cbe2b3_nohash_0.wav +not-wake-samples/two/102192fd_nohash_0.wav +not-wake-samples/two/7cf14c54_nohash_2.wav +not-wake-samples/two/7c1d8533_nohash_0.wav +not-wake-samples/two/dc6e9c04_nohash_0.wav +not-wake-samples/two/bfdb9801_nohash_2.wav +not-wake-samples/two/7c1d8533_nohash_4.wav +not-wake-samples/two/e10e2cbb_nohash_1.wav +not-wake-samples/two/4bba14ce_nohash_0.wav +not-wake-samples/two/789e4ee7_nohash_1.wav +not-wake-samples/two/b49caed3_nohash_4.wav +not-wake-samples/two/964e8cfd_nohash_2.wav +not-wake-samples/two/c634a189_nohash_1.wav +not-wake-samples/two/f8f60f59_nohash_2.wav +not-wake-samples/two/cd85758f_nohash_1.wav +not-wake-samples/two/f839238a_nohash_1.wav +not-wake-samples/two/88053e92_nohash_0.wav +not-wake-samples/two/67961766_nohash_0.wav +not-wake-samples/two/1ecfb537_nohash_0.wav +not-wake-samples/two/14587ff0_nohash_0.wav +not-wake-samples/two/b49caed3_nohash_0.wav +not-wake-samples/two/726382d6_nohash_0.wav +not-wake-samples/two/9f22307d_nohash_2.wav +not-wake-samples/two/52bfbce8_nohash_1.wav +not-wake-samples/two/cb2929ce_nohash_0.wav +not-wake-samples/two/f2b8fc18_nohash_0.wav +not-wake-samples/two/a74f3917_nohash_1.wav +not-wake-samples/two/e7117d00_nohash_1.wav +not-wake-samples/two/4ec7d027_nohash_2.wav +not-wake-samples/two/ad340ed7_nohash_0.wav +not-wake-samples/two/a827e3a1_nohash_1.wav +not-wake-samples/two/6021f08b_nohash_0.wav +not-wake-samples/two/9ff2d2f4_nohash_3.wav +not-wake-samples/two/735845ab_nohash_2.wav +not-wake-samples/two/caf9fceb_nohash_1.wav +not-wake-samples/two/299c14b1_nohash_0.wav +not-wake-samples/two/39a12648_nohash_0.wav +not-wake-samples/two/28ce0c58_nohash_4.wav +not-wake-samples/two/e1469561_nohash_2.wav +not-wake-samples/two/b83c1acf_nohash_1.wav +not-wake-samples/two/6add0595_nohash_0.wav +not-wake-samples/two/a6d586b7_nohash_2.wav +not-wake-samples/two/fd395b74_nohash_4.wav +not-wake-samples/two/2f0a410b_nohash_0.wav +not-wake-samples/two/fac7deca_nohash_0.wav +not-wake-samples/two/31d31fa0_nohash_2.wav +not-wake-samples/two/f00180d0_nohash_0.wav +not-wake-samples/two/2a89ad5c_nohash_0.wav +not-wake-samples/two/2643992f_nohash_2.wav +not-wake-samples/two/2ad772d6_nohash_0.wav +not-wake-samples/two/ea1f888c_nohash_0.wav +not-wake-samples/two/0137b3f4_nohash_3.wav +not-wake-samples/two/90b0b91a_nohash_0.wav +not-wake-samples/two/6f5b4d3d_nohash_0.wav +not-wake-samples/two/9c06a3f3_nohash_0.wav +not-wake-samples/two/311fde72_nohash_0.wav +not-wake-samples/two/b19f7f5f_nohash_0.wav +not-wake-samples/two/13d7b8c9_nohash_0.wav +not-wake-samples/two/70a00e98_nohash_2.wav +not-wake-samples/two/be7a5b2d_nohash_1.wav +not-wake-samples/two/e3b64217_nohash_1.wav +not-wake-samples/two/bab36420_nohash_4.wav +not-wake-samples/two/9a3f97f8_nohash_1.wav +not-wake-samples/two/c5c60d8d_nohash_1.wav +not-wake-samples/two/3e31dffe_nohash_4.wav +not-wake-samples/two/62641b88_nohash_0.wav +not-wake-samples/two/ccfd721c_nohash_0.wav +not-wake-samples/two/96d5276f_nohash_0.wav +not-wake-samples/two/7e843da8_nohash_0.wav +not-wake-samples/two/cb8f8307_nohash_2.wav +not-wake-samples/two/e1469561_nohash_0.wav +not-wake-samples/two/8012c69d_nohash_1.wav +not-wake-samples/two/da8fa823_nohash_0.wav +not-wake-samples/two/ccea893d_nohash_0.wav +not-wake-samples/two/f7879738_nohash_1.wav +not-wake-samples/two/f19c1390_nohash_1.wav +not-wake-samples/two/2275edbb_nohash_0.wav +not-wake-samples/two/34263ab3_nohash_0.wav +not-wake-samples/two/9a69672b_nohash_4.wav +not-wake-samples/two/39a12648_nohash_1.wav +not-wake-samples/two/0137b3f4_nohash_1.wav +not-wake-samples/two/c1e0e8e3_nohash_0.wav +not-wake-samples/two/8d5d076d_nohash_0.wav +not-wake-samples/two/f8f60f59_nohash_1.wav +not-wake-samples/two/7fd25f7c_nohash_2.wav +not-wake-samples/two/b4aa9fef_nohash_0.wav +not-wake-samples/two/37dca74f_nohash_2.wav +not-wake-samples/two/763188c4_nohash_1.wav +not-wake-samples/two/172dc2b0_nohash_0.wav +not-wake-samples/two/95ba4996_nohash_0.wav +not-wake-samples/two/5236848b_nohash_1.wav +not-wake-samples/two/87014d40_nohash_0.wav +not-wake-samples/two/014f9f65_nohash_1.wav +not-wake-samples/two/7e4fa1d8_nohash_1.wav +not-wake-samples/two/1afd49bf_nohash_1.wav +not-wake-samples/two/68dd409e_nohash_0.wav +not-wake-samples/two/92b2bf59_nohash_0.wav +not-wake-samples/two/9a43b64b_nohash_0.wav +not-wake-samples/two/4e8c5516_nohash_1.wav +not-wake-samples/two/cf87b736_nohash_0.wav +not-wake-samples/two/5c39594f_nohash_4.wav +not-wake-samples/two/36050ef3_nohash_1.wav +not-wake-samples/two/bca56796_nohash_0.wav +not-wake-samples/two/471a0925_nohash_2.wav +not-wake-samples/two/7ff085e1_nohash_0.wav +not-wake-samples/two/918a2473_nohash_4.wav +not-wake-samples/two/4b39347d_nohash_2.wav +not-wake-samples/two/83f9c4ab_nohash_1.wav +not-wake-samples/two/1ed557b9_nohash_1.wav +not-wake-samples/two/834f03fe_nohash_0.wav +not-wake-samples/two/f864cd4a_nohash_0.wav +not-wake-samples/two/bfdb9801_nohash_0.wav +not-wake-samples/two/9a69672b_nohash_0.wav +not-wake-samples/two/e0315cf6_nohash_1.wav +not-wake-samples/two/2313e093_nohash_0.wav +not-wake-samples/two/2cf28b70_nohash_1.wav +not-wake-samples/two/b87bdb22_nohash_1.wav +not-wake-samples/two/7ca023e2_nohash_1.wav +not-wake-samples/two/c0f8f4df_nohash_1.wav +not-wake-samples/two/e20be42a_nohash_0.wav +not-wake-samples/two/f953e1af_nohash_3.wav +not-wake-samples/two/97addd88_nohash_1.wav +not-wake-samples/two/ec201020_nohash_0.wav +not-wake-samples/two/77655bdf_nohash_1.wav +not-wake-samples/two/7106d229_nohash_1.wav +not-wake-samples/two/e4b02540_nohash_0.wav +not-wake-samples/two/10ace7eb_nohash_0.wav +not-wake-samples/two/59c3a7f2_nohash_1.wav +not-wake-samples/two/8134f43f_nohash_3.wav +not-wake-samples/two/28ce0c58_nohash_1.wav +not-wake-samples/two/2313e093_nohash_1.wav +not-wake-samples/two/2da58b32_nohash_4.wav +not-wake-samples/two/adec6a94_nohash_0.wav +not-wake-samples/two/d3badc9a_nohash_0.wav +not-wake-samples/two/9aa21fa9_nohash_2.wav +not-wake-samples/two/f5e44d34_nohash_0.wav +not-wake-samples/two/9beccfc8_nohash_0.wav +not-wake-samples/two/d2f4f431_nohash_0.wav +not-wake-samples/two/7f74626f_nohash_4.wav +not-wake-samples/two/cd3331a6_nohash_1.wav +not-wake-samples/two/8830e17f_nohash_4.wav +not-wake-samples/two/f6617a86_nohash_0.wav +not-wake-samples/two/51eefcc6_nohash_0.wav +not-wake-samples/two/d197e3ae_nohash_3.wav +not-wake-samples/two/18a8f03f_nohash_0.wav +not-wake-samples/two/2d92f18b_nohash_0.wav +not-wake-samples/two/ffd2ba2f_nohash_2.wav +not-wake-samples/two/569455ff_nohash_0.wav +not-wake-samples/two/d37e4bf1_nohash_2.wav +not-wake-samples/two/82c6d220_nohash_1.wav +not-wake-samples/two/de6eb27c_nohash_0.wav +not-wake-samples/two/030ec18b_nohash_1.wav +not-wake-samples/two/cb8f8307_nohash_3.wav +not-wake-samples/two/f810e799_nohash_0.wav +not-wake-samples/two/da584bc0_nohash_1.wav +not-wake-samples/two/65d844fc_nohash_0.wav +not-wake-samples/two/9c59dd28_nohash_0.wav +not-wake-samples/two/0d393936_nohash_0.wav +not-wake-samples/two/d90b4138_nohash_4.wav +not-wake-samples/two/9f22307d_nohash_1.wav +not-wake-samples/two/80c17118_nohash_0.wav +not-wake-samples/two/151bfb79_nohash_2.wav +not-wake-samples/two/cd3331a6_nohash_0.wav +not-wake-samples/two/7ca023e2_nohash_2.wav +not-wake-samples/two/6a2fb9a5_nohash_0.wav +not-wake-samples/two/b737ee80_nohash_0.wav +not-wake-samples/two/7fd25f7c_nohash_0.wav +not-wake-samples/two/07363607_nohash_1.wav +not-wake-samples/two/6f3458b3_nohash_0.wav +not-wake-samples/two/3903b558_nohash_0.wav +not-wake-samples/two/0bde966a_nohash_0.wav +not-wake-samples/two/aa753bb9_nohash_0.wav +not-wake-samples/two/c93d5e22_nohash_1.wav +not-wake-samples/two/8fce59ff_nohash_2.wav +not-wake-samples/two/5f814c23_nohash_0.wav +not-wake-samples/two/38c388bc_nohash_0.wav +not-wake-samples/two/c948d727_nohash_1.wav +not-wake-samples/two/1365dd89_nohash_0.wav +not-wake-samples/two/b00dff7e_nohash_0.wav +not-wake-samples/two/f44f440f_nohash_0.wav +not-wake-samples/two/83f9c4ab_nohash_2.wav +not-wake-samples/two/4f086393_nohash_0.wav +not-wake-samples/two/4249c833_nohash_2.wav +not-wake-samples/two/f4f59743_nohash_0.wav +not-wake-samples/two/1a6eca98_nohash_1.wav +not-wake-samples/two/060cd039_nohash_0.wav +not-wake-samples/two/a759efbc_nohash_0.wav +not-wake-samples/two/7bae88ed_nohash_0.wav +not-wake-samples/two/f632210f_nohash_0.wav +not-wake-samples/two/d33df435_nohash_1.wav +not-wake-samples/two/9d171fee_nohash_0.wav +not-wake-samples/two/264f471d_nohash_4.wav +not-wake-samples/two/3402e488_nohash_2.wav +not-wake-samples/two/530306f5_nohash_0.wav +not-wake-samples/two/c120e80e_nohash_5.wav +not-wake-samples/two/f216055e_nohash_0.wav +not-wake-samples/two/c2d15ea5_nohash_1.wav +not-wake-samples/two/333784b7_nohash_1.wav +not-wake-samples/two/274c008f_nohash_1.wav +not-wake-samples/two/8f3f252c_nohash_1.wav +not-wake-samples/two/eb3f7d82_nohash_1.wav +not-wake-samples/two/94de6a6a_nohash_4.wav +not-wake-samples/two/1afd49bf_nohash_0.wav +not-wake-samples/two/b63fea9e_nohash_0.wav +not-wake-samples/two/257e17e0_nohash_1.wav +not-wake-samples/two/c71e3acc_nohash_0.wav +not-wake-samples/two/f57469fb_nohash_0.wav +not-wake-samples/two/2643992f_nohash_1.wav +not-wake-samples/two/3d3ddaf8_nohash_0.wav +not-wake-samples/two/07ad9b59_nohash_0.wav +not-wake-samples/two/64da5281_nohash_0.wav +not-wake-samples/two/c0445658_nohash_1.wav +not-wake-samples/two/b9515bf3_nohash_0.wav +not-wake-samples/two/df280250_nohash_0.wav +not-wake-samples/two/937b433e_nohash_0.wav +not-wake-samples/two/adebe223_nohash_0.wav +not-wake-samples/two/ab71c9a7_nohash_0.wav +not-wake-samples/two/57b68383_nohash_1.wav +not-wake-samples/two/e99d36c8_nohash_0.wav +not-wake-samples/two/f92e49f3_nohash_1.wav +not-wake-samples/two/ab81c9c8_nohash_0.wav +not-wake-samples/two/9dc1889e_nohash_0.wav +not-wake-samples/two/311fde72_nohash_2.wav +not-wake-samples/two/8012c69d_nohash_0.wav +not-wake-samples/two/5c8af87a_nohash_1.wav +not-wake-samples/two/b5552931_nohash_1.wav +not-wake-samples/two/c22d3f18_nohash_4.wav +not-wake-samples/two/778a4a01_nohash_1.wav +not-wake-samples/two/65d81c54_nohash_0.wav +not-wake-samples/two/c9b653a0_nohash_0.wav +not-wake-samples/two/fa7895de_nohash_0.wav +not-wake-samples/two/a3fc7884_nohash_0.wav +not-wake-samples/two/d197e3ae_nohash_4.wav +not-wake-samples/two/fb9d6d23_nohash_0.wav +not-wake-samples/two/ad63d93c_nohash_1.wav +not-wake-samples/two/48e8b82a_nohash_0.wav +not-wake-samples/two/73af0c50_nohash_1.wav +not-wake-samples/two/0135f3f2_nohash_0.wav +not-wake-samples/two/8a194ee6_nohash_0.wav +not-wake-samples/two/f0edc767_nohash_0.wav +not-wake-samples/two/fbdc07bb_nohash_1.wav +not-wake-samples/two/735845ab_nohash_4.wav +not-wake-samples/two/bd11c654_nohash_1.wav +not-wake-samples/two/df1d5024_nohash_2.wav +not-wake-samples/two/721f767c_nohash_0.wav +not-wake-samples/two/b1df80c0_nohash_0.wav +not-wake-samples/two/338dacf5_nohash_0.wav +not-wake-samples/two/8056e897_nohash_2.wav +not-wake-samples/two/6c429c7b_nohash_2.wav +not-wake-samples/two/dca2797e_nohash_4.wav +not-wake-samples/two/6a203e0e_nohash_0.wav +not-wake-samples/two/94de6a6a_nohash_3.wav +not-wake-samples/two/9a7c1f83_nohash_1.wav +not-wake-samples/two/7846fd85_nohash_2.wav +not-wake-samples/two/f19c1390_nohash_4.wav +not-wake-samples/two/8c7b691a_nohash_0.wav +not-wake-samples/two/0362539c_nohash_1.wav +not-wake-samples/two/d0faf7e4_nohash_4.wav +not-wake-samples/two/9d8ac38b_nohash_0.wav +not-wake-samples/two/95299b6c_nohash_0.wav +not-wake-samples/two/96ab6565_nohash_3.wav +not-wake-samples/two/617de221_nohash_3.wav +not-wake-samples/two/c727b558_nohash_0.wav +not-wake-samples/two/a879a2c3_nohash_1.wav +not-wake-samples/two/97f4c236_nohash_3.wav +not-wake-samples/two/d9ae8983_nohash_0.wav +not-wake-samples/two/b65f6015_nohash_0.wav +not-wake-samples/two/f292725f_nohash_0.wav +not-wake-samples/two/c6a23ff5_nohash_0.wav +not-wake-samples/two/0487ba9b_nohash_1.wav +not-wake-samples/two/8a325749_nohash_0.wav +not-wake-samples/two/a1a59b72_nohash_0.wav +not-wake-samples/two/8e05039f_nohash_2.wav +not-wake-samples/two/0c2d2ffa_nohash_1.wav +not-wake-samples/two/6071a214_nohash_0.wav +not-wake-samples/two/099d52ad_nohash_1.wav +not-wake-samples/two/7ea032f3_nohash_1.wav +not-wake-samples/two/b97c9f77_nohash_3.wav +not-wake-samples/two/e54a0f16_nohash_0.wav +not-wake-samples/two/e9901cf0_nohash_0.wav +not-wake-samples/two/b63fea9e_nohash_1.wav +not-wake-samples/two/3bc21161_nohash_3.wav +not-wake-samples/two/51055bda_nohash_3.wav +not-wake-samples/two/3b8406c0_nohash_0.wav +not-wake-samples/two/a827e3a1_nohash_2.wav +not-wake-samples/two/24befdb3_nohash_4.wav +not-wake-samples/two/0c2d2ffa_nohash_0.wav +not-wake-samples/two/840c366d_nohash_0.wav +not-wake-samples/two/ce9410da_nohash_0.wav +not-wake-samples/two/c1e0e8e3_nohash_4.wav +not-wake-samples/two/dbb40d24_nohash_3.wav +not-wake-samples/two/9e46cfa1_nohash_0.wav +not-wake-samples/two/7192fddc_nohash_3.wav +not-wake-samples/two/fa7895de_nohash_1.wav +not-wake-samples/two/a2473d62_nohash_0.wav +not-wake-samples/two/73dda36a_nohash_0.wav +not-wake-samples/two/67fcdb05_nohash_1.wav +not-wake-samples/two/3ca784ec_nohash_2.wav +not-wake-samples/two/ccea893d_nohash_2.wav +not-wake-samples/two/0ea0e2f4_nohash_2.wav +not-wake-samples/two/102192fd_nohash_2.wav +not-wake-samples/two/97f4c236_nohash_1.wav +not-wake-samples/two/3847619e_nohash_1.wav +not-wake-samples/two/d5ca80c6_nohash_1.wav +not-wake-samples/two/4e8c5516_nohash_0.wav +not-wake-samples/two/8ed25ef8_nohash_0.wav +not-wake-samples/two/92037d73_nohash_1.wav +not-wake-samples/two/9587481f_nohash_1.wav +not-wake-samples/two/e82914c0_nohash_0.wav +not-wake-samples/two/6727b579_nohash_1.wav +not-wake-samples/two/bbd0bbd0_nohash_1.wav +not-wake-samples/two/a4ca3afe_nohash_1.wav +not-wake-samples/two/caa4779f_nohash_0.wav +not-wake-samples/two/b87bdb22_nohash_0.wav +not-wake-samples/two/742d6431_nohash_1.wav +not-wake-samples/two/c0445658_nohash_2.wav +not-wake-samples/two/6f689791_nohash_0.wav +not-wake-samples/two/4c841771_nohash_1.wav +not-wake-samples/two/102192fd_nohash_3.wav +not-wake-samples/two/5ac04a92_nohash_0.wav +not-wake-samples/two/70a00e98_nohash_1.wav +not-wake-samples/two/bfbd0e6b_nohash_0.wav +not-wake-samples/two/5b26c81b_nohash_0.wav +not-wake-samples/two/cb2929ce_nohash_3.wav +not-wake-samples/two/caf9fceb_nohash_0.wav +not-wake-samples/two/e2008f39_nohash_0.wav +not-wake-samples/two/36050ef3_nohash_4.wav +not-wake-samples/two/3c257192_nohash_1.wav +not-wake-samples/two/cd7f8c1b_nohash_2.wav +not-wake-samples/two/712e4d58_nohash_3.wav +not-wake-samples/two/29fb33da_nohash_4.wav +not-wake-samples/two/b15fc37d_nohash_0.wav +not-wake-samples/two/8281a2a8_nohash_4.wav +not-wake-samples/two/0b40aa8e_nohash_0.wav +not-wake-samples/two/dea820ce_nohash_4.wav +not-wake-samples/two/fb01a182_nohash_2.wav +not-wake-samples/two/97addd88_nohash_0.wav +not-wake-samples/two/c0fb6812_nohash_2.wav +not-wake-samples/two/28ed6bc9_nohash_0.wav +not-wake-samples/two/97f493b9_nohash_0.wav +not-wake-samples/two/02e85b60_nohash_1.wav +not-wake-samples/two/42c6fff1_nohash_0.wav +not-wake-samples/two/f4cae173_nohash_0.wav +not-wake-samples/two/50ed8a7b_nohash_0.wav +not-wake-samples/two/e57abea3_nohash_0.wav +not-wake-samples/two/fb2f3242_nohash_2.wav +not-wake-samples/two/c22d3f18_nohash_3.wav +not-wake-samples/two/9a69672b_nohash_1.wav +not-wake-samples/two/fad7a69a_nohash_1.wav +not-wake-samples/two/d7ca14ef_nohash_1.wav +not-wake-samples/two/a9b574b3_nohash_0.wav +not-wake-samples/two/c0445658_nohash_4.wav +not-wake-samples/two/67fcdb05_nohash_0.wav +not-wake-samples/two/97f4c236_nohash_4.wav +not-wake-samples/two/a0f93943_nohash_0.wav +not-wake-samples/two/80b8eab4_nohash_0.wav +not-wake-samples/two/d4082f3e_nohash_3.wav +not-wake-samples/two/97ae8b25_nohash_0.wav +not-wake-samples/two/2643992f_nohash_0.wav +not-wake-samples/two/edd8bfe3_nohash_1.wav +not-wake-samples/two/b3bdded5_nohash_0.wav +not-wake-samples/two/00f0204f_nohash_0.wav +not-wake-samples/two/686d030b_nohash_4.wav +not-wake-samples/two/0ff728b5_nohash_2.wav +not-wake-samples/two/13199b79_nohash_0.wav +not-wake-samples/two/6094340e_nohash_0.wav +not-wake-samples/two/db79a764_nohash_0.wav +not-wake-samples/two/26e9ae6b_nohash_0.wav +not-wake-samples/two/d1214f15_nohash_2.wav +not-wake-samples/two/2bdbe5f7_nohash_3.wav +not-wake-samples/two/3d53244b_nohash_1.wav +not-wake-samples/two/b5552931_nohash_2.wav +not-wake-samples/two/7192fddc_nohash_0.wav +not-wake-samples/two/a9f38bae_nohash_0.wav +not-wake-samples/two/626e323f_nohash_0.wav +not-wake-samples/two/23059a35_nohash_0.wav +not-wake-samples/two/28ef2a01_nohash_1.wav +not-wake-samples/two/b433332a_nohash_0.wav +not-wake-samples/two/f5733968_nohash_2.wav +not-wake-samples/two/c1d39ce8_nohash_8.wav +not-wake-samples/two/918a2473_nohash_2.wav +not-wake-samples/two/3ac2e76f_nohash_2.wav +not-wake-samples/two/e7ea8b76_nohash_1.wav +not-wake-samples/two/587f3271_nohash_0.wav +not-wake-samples/two/6c968bd9_nohash_3.wav +not-wake-samples/two/611d2b50_nohash_3.wav +not-wake-samples/two/b83c1acf_nohash_3.wav +not-wake-samples/two/179a61b7_nohash_3.wav +not-wake-samples/two/c1d39ce8_nohash_5.wav +not-wake-samples/two/d9462202_nohash_1.wav +not-wake-samples/two/e5dadd24_nohash_0.wav +not-wake-samples/two/591d32f3_nohash_0.wav +not-wake-samples/two/7f17667c_nohash_1.wav +not-wake-samples/two/190821dc_nohash_4.wav +not-wake-samples/two/ad63d93c_nohash_4.wav +not-wake-samples/two/a8f45bdc_nohash_0.wav +not-wake-samples/two/5a0bc987_nohash_0.wav +not-wake-samples/two/da5dadb9_nohash_0.wav +not-wake-samples/two/6c0f6493_nohash_2.wav +not-wake-samples/two/7846fd85_nohash_4.wav +not-wake-samples/two/38c30a4a_nohash_0.wav +not-wake-samples/two/5e3dde6b_nohash_2.wav +not-wake-samples/two/5e3dde6b_nohash_1.wav +not-wake-samples/two/8830e17f_nohash_0.wav +not-wake-samples/two/fffcabd1_nohash_0.wav +not-wake-samples/two/43691f67_nohash_0.wav +not-wake-samples/two/b55a09be_nohash_1.wav +not-wake-samples/two/43b85b64_nohash_1.wav +not-wake-samples/two/215699ff_nohash_0.wav +not-wake-samples/two/36050ef3_nohash_3.wav +not-wake-samples/two/529eda42_nohash_0.wav +not-wake-samples/two/ba676390_nohash_0.wav +not-wake-samples/two/650daf8e_nohash_0.wav +not-wake-samples/two/8a325749_nohash_1.wav +not-wake-samples/two/0474c92a_nohash_1.wav +not-wake-samples/two/1ecfb537_nohash_3.wav +not-wake-samples/two/884ae8e1_nohash_0.wav +not-wake-samples/two/e96a5020_nohash_2.wav +not-wake-samples/two/eb0676ec_nohash_2.wav +not-wake-samples/two/62641b88_nohash_1.wav +not-wake-samples/two/b4aa9fef_nohash_4.wav +not-wake-samples/two/efa16ffd_nohash_0.wav +not-wake-samples/two/cd85758f_nohash_3.wav +not-wake-samples/two/20174140_nohash_0.wav +not-wake-samples/two/c53b335a_nohash_0.wav +not-wake-samples/two/46a153d8_nohash_1.wav +not-wake-samples/two/789e4ee7_nohash_0.wav +not-wake-samples/two/7ff4fc72_nohash_3.wav +not-wake-samples/two/229978fd_nohash_0.wav +not-wake-samples/two/1ed557b9_nohash_0.wav +not-wake-samples/two/a8cb6dda_nohash_0.wav +not-wake-samples/two/563aa4e6_nohash_2.wav +not-wake-samples/two/7cf14c54_nohash_3.wav +not-wake-samples/two/be7a5b2d_nohash_3.wav +not-wake-samples/two/8ed25ef8_nohash_2.wav +not-wake-samples/two/7303215d_nohash_0.wav +not-wake-samples/two/1626bc5a_nohash_0.wav +not-wake-samples/two/012c8314_nohash_0.wav +not-wake-samples/two/7d149b38_nohash_0.wav +not-wake-samples/two/b7a0754f_nohash_2.wav +not-wake-samples/two/73cccfaf_nohash_0.wav +not-wake-samples/two/c37a72d3_nohash_0.wav +not-wake-samples/two/324210dd_nohash_4.wav +not-wake-samples/two/eb76bc68_nohash_0.wav +not-wake-samples/two/ad89eb1e_nohash_0.wav +not-wake-samples/two/77f185d3_nohash_2.wav +not-wake-samples/two/caf1803e_nohash_0.wav +not-wake-samples/two/9886d8bf_nohash_0.wav +not-wake-samples/two/49f30eed_nohash_0.wav +not-wake-samples/two/38d78313_nohash_3.wav +not-wake-samples/two/611d2b50_nohash_0.wav +not-wake-samples/two/dce05676_nohash_2.wav +not-wake-samples/two/14df1e28_nohash_0.wav +not-wake-samples/two/0ff728b5_nohash_0.wav +not-wake-samples/two/b43de700_nohash_1.wav +not-wake-samples/two/e6e29c47_nohash_1.wav +not-wake-samples/two/533c6564_nohash_1.wav +not-wake-samples/two/95299b6c_nohash_1.wav +not-wake-samples/two/cc6ee39b_nohash_1.wav +not-wake-samples/two/5d0ab165_nohash_1.wav +not-wake-samples/two/f84762e5_nohash_1.wav +not-wake-samples/two/5e3b7a84_nohash_0.wav +not-wake-samples/two/dea820ce_nohash_0.wav +not-wake-samples/two/5a3712c9_nohash_0.wav +not-wake-samples/two/b9f46737_nohash_1.wav +not-wake-samples/two/bed06fac_nohash_1.wav +not-wake-samples/two/33246bc2_nohash_0.wav +not-wake-samples/two/fb01a182_nohash_0.wav +not-wake-samples/two/bbaa7946_nohash_0.wav +not-wake-samples/two/15f04ff8_nohash_0.wav +not-wake-samples/two/e82914c0_nohash_1.wav +not-wake-samples/two/833a0279_nohash_0.wav +not-wake-samples/two/d486fb84_nohash_1.wav +not-wake-samples/two/5aac2efa_nohash_0.wav +not-wake-samples/two/4fe01997_nohash_0.wav +not-wake-samples/two/ab7b5acd_nohash_0.wav +not-wake-samples/two/c0445658_nohash_3.wav +not-wake-samples/two/7192fddc_nohash_2.wav +not-wake-samples/two/87c62767_nohash_0.wav +not-wake-samples/two/fb7cfe0e_nohash_2.wav +not-wake-samples/two/b9515bf3_nohash_3.wav +not-wake-samples/two/19e98e89_nohash_2.wav +not-wake-samples/two/98447c43_nohash_0.wav +not-wake-samples/two/91223b83_nohash_0.wav +not-wake-samples/two/210f3aa9_nohash_2.wav +not-wake-samples/two/b49caed3_nohash_2.wav +not-wake-samples/two/ac899eb7_nohash_0.wav +not-wake-samples/two/c948d727_nohash_3.wav +not-wake-samples/two/fd32732a_nohash_0.wav +not-wake-samples/two/5c237956_nohash_0.wav +not-wake-samples/two/87728a88_nohash_1.wav +not-wake-samples/two/b26343e9_nohash_0.wav +not-wake-samples/two/5d9bb361_nohash_0.wav +not-wake-samples/two/96a48d28_nohash_0.wav +not-wake-samples/two/e53139ad_nohash_3.wav +not-wake-samples/two/3e549219_nohash_1.wav +not-wake-samples/two/9e6bb505_nohash_1.wav +not-wake-samples/two/7c1d8533_nohash_3.wav +not-wake-samples/two/e900b652_nohash_0.wav +not-wake-samples/two/637c702a_nohash_2.wav +not-wake-samples/two/e95c70e2_nohash_0.wav +not-wake-samples/two/617de221_nohash_4.wav +not-wake-samples/two/bfaf2000_nohash_0.wav +not-wake-samples/two/c518d1b1_nohash_0.wav +not-wake-samples/two/ed3c2d05_nohash_0.wav +not-wake-samples/two/9785931e_nohash_0.wav +not-wake-samples/two/ad5aeec2_nohash_0.wav +not-wake-samples/two/9a3f97f8_nohash_2.wav +not-wake-samples/two/093f65a1_nohash_0.wav +not-wake-samples/two/beb49c22_nohash_0.wav +not-wake-samples/two/ab71c9a7_nohash_3.wav +not-wake-samples/two/f21893dc_nohash_0.wav +not-wake-samples/two/4b25f620_nohash_0.wav +not-wake-samples/two/e41e41f7_nohash_0.wav +not-wake-samples/two/151bfb79_nohash_0.wav +not-wake-samples/two/377e916b_nohash_0.wav +not-wake-samples/two/7211390b_nohash_4.wav +not-wake-samples/two/f7879738_nohash_0.wav +not-wake-samples/two/8012c69d_nohash_2.wav +not-wake-samples/two/94de6a6a_nohash_1.wav +not-wake-samples/two/e54a0f16_nohash_1.wav +not-wake-samples/two/ab5d7179_nohash_0.wav +not-wake-samples/two/00b01445_nohash_2.wav +not-wake-samples/two/d7559b2d_nohash_0.wav +not-wake-samples/two/26b28ea7_nohash_0.wav +not-wake-samples/two/9886d8bf_nohash_1.wav +not-wake-samples/two/43fc47a7_nohash_0.wav +not-wake-samples/two/c37a72d3_nohash_1.wav +not-wake-samples/two/5a9f7324_nohash_0.wav +not-wake-samples/two/3fdafe25_nohash_0.wav +not-wake-samples/two/59b98a22_nohash_0.wav +not-wake-samples/two/264f471d_nohash_0.wav +not-wake-samples/two/042186b8_nohash_0.wav +not-wake-samples/two/1cb788bc_nohash_0.wav +not-wake-samples/two/3bfd30e6_nohash_3.wav +not-wake-samples/two/105a0eea_nohash_0.wav +not-wake-samples/two/3c257192_nohash_2.wav +not-wake-samples/two/d1a4fb3f_nohash_0.wav +not-wake-samples/two/8f0d3c27_nohash_0.wav +not-wake-samples/two/2d056836_nohash_1.wav +not-wake-samples/two/01bb6a2a_nohash_2.wav +not-wake-samples/two/4bb1244f_nohash_0.wav +not-wake-samples/two/918a2473_nohash_0.wav +not-wake-samples/two/4c4d2526_nohash_0.wav +not-wake-samples/two/5ab63b0a_nohash_0.wav +not-wake-samples/two/439c84f4_nohash_0.wav +not-wake-samples/two/e7ea8b76_nohash_4.wav +not-wake-samples/two/8d5d076d_nohash_1.wav +not-wake-samples/two/de040337_nohash_0.wav +not-wake-samples/two/dca6b373_nohash_0.wav +not-wake-samples/two/92a9c5e6_nohash_0.wav +not-wake-samples/two/7cf14c54_nohash_4.wav +not-wake-samples/two/1eddce1d_nohash_2.wav +not-wake-samples/two/179a61b7_nohash_2.wav +not-wake-samples/two/9db2bfe9_nohash_0.wav +not-wake-samples/two/726382d6_nohash_3.wav +not-wake-samples/two/8281a2a8_nohash_2.wav +not-wake-samples/two/d926bb17_nohash_0.wav +not-wake-samples/two/5e3dde6b_nohash_0.wav +not-wake-samples/two/e7d0eb3f_nohash_0.wav +not-wake-samples/two/62ef962d_nohash_0.wav +not-wake-samples/two/625fd898_nohash_1.wav +not-wake-samples/two/0e5193e6_nohash_1.wav +not-wake-samples/two/0ea0e2f4_nohash_1.wav +not-wake-samples/two/6d1dcca6_nohash_1.wav +not-wake-samples/two/9b3ea809_nohash_1.wav +not-wake-samples/two/4a1e736b_nohash_3.wav +not-wake-samples/two/da584bc0_nohash_2.wav +not-wake-samples/two/ec5ab5d5_nohash_2.wav +not-wake-samples/two/9acd0254_nohash_0.wav +not-wake-samples/two/eb3f7d82_nohash_3.wav +not-wake-samples/two/a97017df_nohash_0.wav +not-wake-samples/two/8f4c551f_nohash_0.wav +not-wake-samples/two/3d3ddaf8_nohash_1.wav +not-wake-samples/two/acde7e73_nohash_3.wav +not-wake-samples/two/3c257192_nohash_3.wav +not-wake-samples/two/7b301939_nohash_0.wav +not-wake-samples/two/918a2473_nohash_1.wav +not-wake-samples/two/b1f8326d_nohash_0.wav +not-wake-samples/two/df1d5024_nohash_0.wav +not-wake-samples/two/bbd0bbd0_nohash_4.wav +not-wake-samples/two/611d2b50_nohash_1.wav +not-wake-samples/two/49af4432_nohash_3.wav +not-wake-samples/two/89d6d11e_nohash_0.wav +not-wake-samples/two/099d52ad_nohash_0.wav +not-wake-samples/two/e6db3894_nohash_0.wav +not-wake-samples/two/df1d5024_nohash_1.wav +not-wake-samples/two/b6ebe225_nohash_0.wav +not-wake-samples/two/3bfd30e6_nohash_1.wav +not-wake-samples/two/c79159aa_nohash_2.wav +not-wake-samples/two/8134f43f_nohash_1.wav +not-wake-samples/two/c6ee87a7_nohash_0.wav +not-wake-samples/two/70a00e98_nohash_0.wav +not-wake-samples/two/518588b6_nohash_0.wav +not-wake-samples/two/a4ca3afe_nohash_0.wav +not-wake-samples/two/b7a0754f_nohash_4.wav +not-wake-samples/two/5f8e50a0_nohash_1.wav +not-wake-samples/two/37dca74f_nohash_4.wav +not-wake-samples/two/fe291fa9_nohash_0.wav +not-wake-samples/two/56eab10e_nohash_0.wav +not-wake-samples/two/f5d09ebd_nohash_0.wav +not-wake-samples/two/fc94edb0_nohash_0.wav +not-wake-samples/two/1ecfb537_nohash_2.wav +not-wake-samples/two/d197e3ae_nohash_2.wav +not-wake-samples/two/34805883_nohash_2.wav +not-wake-samples/two/87728a88_nohash_2.wav +not-wake-samples/two/73af0c50_nohash_3.wav +not-wake-samples/two/f2a90886_nohash_1.wav +not-wake-samples/two/5236848b_nohash_0.wav +not-wake-samples/two/b4aa9fef_nohash_3.wav +not-wake-samples/two/7106d229_nohash_0.wav +not-wake-samples/two/079d1020_nohash_2.wav +not-wake-samples/two/238c112c_nohash_0.wav +not-wake-samples/two/d7a58714_nohash_0.wav +not-wake-samples/two/3cdecb0b_nohash_0.wav +not-wake-samples/two/d84829e0_nohash_0.wav +not-wake-samples/two/712e4d58_nohash_0.wav +not-wake-samples/two/88e90bc1_nohash_0.wav +not-wake-samples/two/28e47b1a_nohash_2.wav +not-wake-samples/two/8335f893_nohash_1.wav +not-wake-samples/two/00f0204f_nohash_1.wav +not-wake-samples/two/24ed94ab_nohash_0.wav +not-wake-samples/two/5b1db3ee_nohash_0.wav +not-wake-samples/two/9ff2d2f4_nohash_2.wav +not-wake-samples/two/96ab6565_nohash_1.wav +not-wake-samples/two/36746d7f_nohash_0.wav +not-wake-samples/two/01d22d03_nohash_0.wav +not-wake-samples/two/834f03fe_nohash_1.wav +not-wake-samples/two/28612180_nohash_2.wav +not-wake-samples/two/df038de4_nohash_2.wav +not-wake-samples/two/e6e29c47_nohash_0.wav +not-wake-samples/two/551e42e8_nohash_1.wav +not-wake-samples/two/44b5720d_nohash_0.wav +not-wake-samples/two/a4ca3afe_nohash_2.wav +not-wake-samples/two/7fc74fbe_nohash_1.wav +not-wake-samples/two/c93d5e22_nohash_4.wav +not-wake-samples/two/0ff728b5_nohash_1.wav +not-wake-samples/two/7fd25f7c_nohash_1.wav +not-wake-samples/two/d0faf7e4_nohash_1.wav +not-wake-samples/two/5f47fdf9_nohash_1.wav +not-wake-samples/two/94de6a6a_nohash_2.wav +not-wake-samples/two/ce49cb60_nohash_0.wav +not-wake-samples/two/617de221_nohash_2.wav +not-wake-samples/two/333784b7_nohash_3.wav +not-wake-samples/two/ec5ab5d5_nohash_3.wav +not-wake-samples/two/8056e897_nohash_1.wav +not-wake-samples/two/53d5b86f_nohash_0.wav +not-wake-samples/two/617de221_nohash_1.wav +not-wake-samples/two/71f9bba8_nohash_0.wav +not-wake-samples/two/ee4a907f_nohash_0.wav +not-wake-samples/two/324210dd_nohash_2.wav +not-wake-samples/two/cb8f8307_nohash_5.wav +not-wake-samples/two/863880b7_nohash_0.wav +not-wake-samples/two/2cec1d47_nohash_0.wav +not-wake-samples/two/953fe1ad_nohash_4.wav +not-wake-samples/two/ffd2ba2f_nohash_3.wav +not-wake-samples/two/cd911ace_nohash_0.wav +not-wake-samples/two/7ff4fc72_nohash_2.wav +not-wake-samples/two/d31d8dd7_nohash_0.wav +not-wake-samples/two/30065f33_nohash_1.wav +not-wake-samples/two/e652590d_nohash_1.wav +not-wake-samples/two/6af4aa07_nohash_0.wav +not-wake-samples/two/6c968bd9_nohash_1.wav +not-wake-samples/two/69953f48_nohash_0.wav +not-wake-samples/two/0bd689d7_nohash_0.wav +not-wake-samples/two/10ace7eb_nohash_1.wav +not-wake-samples/two/723efc4c_nohash_0.wav +not-wake-samples/two/8c3c4715_nohash_0.wav +not-wake-samples/two/07c5129e_nohash_1.wav +not-wake-samples/two/2da58b32_nohash_1.wav +not-wake-samples/two/8ea22de7_nohash_0.wav +not-wake-samples/two/3d53244b_nohash_4.wav +not-wake-samples/two/bd061bef_nohash_0.wav +not-wake-samples/two/eb3f7d82_nohash_0.wav +not-wake-samples/two/71aa5b54_nohash_0.wav +not-wake-samples/two/2250f5f2_nohash_0.wav +not-wake-samples/two/778a4a01_nohash_0.wav +not-wake-samples/two/88120683_nohash_0.wav +not-wake-samples/two/d9e9f554_nohash_2.wav +not-wake-samples/two/c1d39ce8_nohash_1.wav +not-wake-samples/two/3f2b358d_nohash_0.wav +not-wake-samples/two/3b852f6f_nohash_0.wav +not-wake-samples/two/f9318c93_nohash_0.wav +not-wake-samples/two/ee4a907f_nohash_1.wav +not-wake-samples/two/3cfc6b3a_nohash_0.wav +not-wake-samples/two/2bdbe5f7_nohash_2.wav +not-wake-samples/two/4c77947d_nohash_0.wav +not-wake-samples/two/fbf3dd31_nohash_0.wav +not-wake-samples/two/e53139ad_nohash_0.wav +not-wake-samples/two/dce5041a_nohash_0.wav +not-wake-samples/two/78884794_nohash_1.wav +not-wake-samples/two/3e31dffe_nohash_1.wav +not-wake-samples/two/c22d3f18_nohash_1.wav +not-wake-samples/two/07c5129e_nohash_0.wav +not-wake-samples/two/d750966e_nohash_1.wav +not-wake-samples/two/9799379a_nohash_0.wav +not-wake-samples/two/4290ca61_nohash_0.wav +not-wake-samples/two/c120e80e_nohash_4.wav +not-wake-samples/two/cb2929ce_nohash_7.wav +not-wake-samples/two/c33682f0_nohash_0.wav +not-wake-samples/two/db8a3397_nohash_0.wav +not-wake-samples/two/d84829e0_nohash_1.wav +not-wake-samples/two/abbfc3b4_nohash_0.wav +not-wake-samples/two/cd7f8c1b_nohash_0.wav +not-wake-samples/two/af8b2f2c_nohash_1.wav +not-wake-samples/two/ae04cdbe_nohash_0.wav +not-wake-samples/two/39999a0f_nohash_0.wav +not-wake-samples/two/cb2929ce_nohash_8.wav +not-wake-samples/two/d9462202_nohash_2.wav +not-wake-samples/two/f2a90886_nohash_0.wav +not-wake-samples/two/e805a617_nohash_0.wav +not-wake-samples/two/c24d96eb_nohash_0.wav +not-wake-samples/two/96105282_nohash_0.wav +not-wake-samples/two/abbfc3b4_nohash_2.wav +not-wake-samples/two/be7a5b2d_nohash_2.wav +not-wake-samples/two/15b0c947_nohash_2.wav +not-wake-samples/two/11379f4d_nohash_0.wav +not-wake-samples/two/bdee441c_nohash_2.wav +not-wake-samples/two/acde7e73_nohash_1.wav +not-wake-samples/two/e0315cf6_nohash_0.wav +not-wake-samples/two/f7879738_nohash_2.wav +not-wake-samples/two/3bfd30e6_nohash_4.wav +not-wake-samples/two/a0a8d759_nohash_0.wav +not-wake-samples/two/2335770e_nohash_0.wav +not-wake-samples/two/179a61b7_nohash_0.wav +not-wake-samples/two/b97c9f77_nohash_2.wav +not-wake-samples/two/7fa5fa1f_nohash_0.wav +not-wake-samples/two/726382d6_nohash_2.wav +not-wake-samples/two/037c445a_nohash_0.wav +not-wake-samples/two/41777abb_nohash_1.wav +not-wake-samples/two/840c366d_nohash_2.wav +not-wake-samples/two/ffd2ba2f_nohash_0.wav +not-wake-samples/two/a331d9cb_nohash_0.wav +not-wake-samples/two/37a3cd33_nohash_1.wav +not-wake-samples/two/1706c35f_nohash_1.wav +not-wake-samples/two/29fb33da_nohash_1.wav +not-wake-samples/two/023a61ad_nohash_0.wav +not-wake-samples/two/c0c0d87d_nohash_2.wav +not-wake-samples/two/0f7dc557_nohash_1.wav +not-wake-samples/two/6c0f6493_nohash_4.wav +not-wake-samples/two/2f0a410b_nohash_1.wav +not-wake-samples/two/51055bda_nohash_4.wav +not-wake-samples/two/34ba417a_nohash_0.wav +not-wake-samples/two/6c968bd9_nohash_0.wav +not-wake-samples/two/7c1d8533_nohash_5.wav +not-wake-samples/two/03cf93b1_nohash_1.wav +not-wake-samples/two/6c968bd9_nohash_4.wav +not-wake-samples/two/cb2929ce_nohash_4.wav +not-wake-samples/two/15c563d7_nohash_3.wav +not-wake-samples/two/86648261_nohash_0.wav +not-wake-samples/two/eb3f7d82_nohash_2.wav +not-wake-samples/two/2aec99ec_nohash_0.wav +not-wake-samples/two/c33682f0_nohash_2.wav +not-wake-samples/two/d952a17e_nohash_0.wav +not-wake-samples/two/9beccfc8_nohash_1.wav +not-wake-samples/two/0135f3f2_nohash_1.wav +not-wake-samples/two/528f9242_nohash_1.wav +not-wake-samples/two/c1d39ce8_nohash_6.wav +not-wake-samples/two/f8f60f59_nohash_3.wav +not-wake-samples/two/305776dd_nohash_0.wav +not-wake-samples/two/f804cbb3_nohash_0.wav +not-wake-samples/two/e9b61425_nohash_1.wav +not-wake-samples/two/4d9e07cf_nohash_1.wav +not-wake-samples/two/24befdb3_nohash_1.wav +not-wake-samples/two/39c13eed_nohash_1.wav +not-wake-samples/two/5f449e17_nohash_0.wav +not-wake-samples/two/f19d1738_nohash_0.wav +not-wake-samples/two/7061c7d1_nohash_0.wav +not-wake-samples/two/fce96bac_nohash_1.wav +not-wake-samples/two/6727b579_nohash_3.wav +not-wake-samples/two/8335f893_nohash_0.wav +not-wake-samples/two/b959cd0c_nohash_1.wav +not-wake-samples/two/37bd115d_nohash_0.wav +not-wake-samples/two/9ff2d2f4_nohash_0.wav +not-wake-samples/two/7799c9cd_nohash_0.wav +not-wake-samples/two/0e5193e6_nohash_0.wav +not-wake-samples/two/483e2a6f_nohash_0.wav +not-wake-samples/two/c1e0e8e3_nohash_3.wav +not-wake-samples/two/02e85b60_nohash_0.wav +not-wake-samples/two/1c3f50ad_nohash_0.wav +not-wake-samples/two/53578f4e_nohash_0.wav +not-wake-samples/two/763188c4_nohash_3.wav +not-wake-samples/two/a60a09cf_nohash_0.wav +not-wake-samples/two/a759efbc_nohash_2.wav +not-wake-samples/two/f4c77b26_nohash_0.wav +not-wake-samples/two/659b7fae_nohash_0.wav +not-wake-samples/two/9a7c1f83_nohash_0.wav +not-wake-samples/two/4a1e736b_nohash_2.wav +not-wake-samples/two/5165cf0a_nohash_0.wav +not-wake-samples/two/8b775397_nohash_0.wav +not-wake-samples/two/2510c044_nohash_1.wav +not-wake-samples/two/9efe5140_nohash_2.wav +not-wake-samples/two/c6ee87a7_nohash_2.wav +not-wake-samples/two/f17be97f_nohash_0.wav +not-wake-samples/two/5fc3ed24_nohash_1.wav +not-wake-samples/two/2e73212b_nohash_0.wav +not-wake-samples/two/96a48d28_nohash_1.wav +not-wake-samples/two/24694eb6_nohash_1.wav +not-wake-samples/two/ecef25ba_nohash_1.wav +not-wake-samples/two/32561e9e_nohash_0.wav +not-wake-samples/two/d55aa56c_nohash_0.wav +not-wake-samples/two/c6ee87a7_nohash_1.wav +not-wake-samples/two/b43de700_nohash_2.wav +not-wake-samples/two/f618568f_nohash_0.wav +not-wake-samples/two/f34e6f44_nohash_0.wav +not-wake-samples/two/bfdb9801_nohash_1.wav +not-wake-samples/two/ac4b3fc3_nohash_0.wav +not-wake-samples/two/ea1f888c_nohash_1.wav +not-wake-samples/two/3ff840aa_nohash_2.wav +not-wake-samples/two/b83c1acf_nohash_0.wav +not-wake-samples/two/493392c6_nohash_2.wav +not-wake-samples/two/712e4d58_nohash_4.wav +not-wake-samples/two/b31ad508_nohash_0.wav +not-wake-samples/two/ec21c46b_nohash_0.wav +not-wake-samples/two/afe0b87d_nohash_0.wav +not-wake-samples/two/364f979f_nohash_1.wav +not-wake-samples/two/51eefcc6_nohash_1.wav +not-wake-samples/two/86f12ac0_nohash_0.wav +not-wake-samples/two/afd53389_nohash_0.wav +not-wake-samples/two/888a0c49_nohash_4.wav +not-wake-samples/two/e9901cf0_nohash_1.wav +not-wake-samples/two/01b4757a_nohash_1.wav +not-wake-samples/two/f1b35ace_nohash_1.wav +not-wake-samples/two/099d52ad_nohash_4.wav +not-wake-samples/two/4ec7d027_nohash_0.wav +not-wake-samples/two/1e4064b8_nohash_1.wav +not-wake-samples/two/31d68957_nohash_0.wav +not-wake-samples/two/9886d8bf_nohash_2.wav +not-wake-samples/two/652b3da7_nohash_0.wav +not-wake-samples/two/77f185d3_nohash_0.wav +not-wake-samples/two/57b68383_nohash_0.wav +not-wake-samples/two/b21f0fa4_nohash_0.wav +not-wake-samples/two/11099149_nohash_0.wav +not-wake-samples/two/3fb8c268_nohash_0.wav +not-wake-samples/two/902258bb_nohash_0.wav +not-wake-samples/two/30802c5d_nohash_0.wav +not-wake-samples/two/bd8412df_nohash_0.wav +not-wake-samples/two/e54a0f16_nohash_4.wav +not-wake-samples/two/4249c833_nohash_0.wav +not-wake-samples/two/bbd0bbd0_nohash_2.wav +not-wake-samples/two/8f4c551f_nohash_2.wav +not-wake-samples/two/8eb4a1bf_nohash_3.wav +not-wake-samples/two/44dad20e_nohash_0.wav +not-wake-samples/two/5f814c23_nohash_1.wav +not-wake-samples/two/96c66ab7_nohash_1.wav +not-wake-samples/two/51055bda_nohash_0.wav +not-wake-samples/two/1cbcc7a7_nohash_0.wav +not-wake-samples/two/ff63ab0b_nohash_0.wav +not-wake-samples/two/c948d727_nohash_2.wav +not-wake-samples/two/0f250098_nohash_1.wav +not-wake-samples/two/8aa35b0c_nohash_0.wav +not-wake-samples/two/cf8d91cf_nohash_0.wav +not-wake-samples/two/264f471d_nohash_2.wav +not-wake-samples/two/b7a0754f_nohash_1.wav +not-wake-samples/two/efbc3952_nohash_0.wav +not-wake-samples/two/190821dc_nohash_2.wav +not-wake-samples/two/e91d173e_nohash_1.wav +not-wake-samples/two/6c429c7b_nohash_3.wav +not-wake-samples/two/f92e49f3_nohash_4.wav +not-wake-samples/two/ad6a46f1_nohash_0.wav +not-wake-samples/two/3565ca83_nohash_0.wav +not-wake-samples/two/96ab6565_nohash_2.wav +not-wake-samples/two/ee4a907f_nohash_2.wav +not-wake-samples/two/e54a0f16_nohash_2.wav +not-wake-samples/two/d8ee4734_nohash_0.wav +not-wake-samples/two/e7ea8b76_nohash_0.wav +not-wake-samples/two/ba59cab3_nohash_1.wav +not-wake-samples/two/62ff07ef_nohash_0.wav +not-wake-samples/two/01b4757a_nohash_0.wav +not-wake-samples/two/facd97c0_nohash_1.wav +not-wake-samples/two/ad63d93c_nohash_2.wav +not-wake-samples/two/fd32732a_nohash_2.wav +not-wake-samples/two/87728a88_nohash_0.wav +not-wake-samples/two/ec201020_nohash_3.wav +not-wake-samples/two/f3957e23_nohash_0.wav +not-wake-samples/two/35d1b6ee_nohash_3.wav +not-wake-samples/two/a24cf51c_nohash_0.wav +not-wake-samples/two/aa48c94a_nohash_0.wav +not-wake-samples/two/8f4c551f_nohash_1.wav +not-wake-samples/two/8910e5ef_nohash_0.wav +not-wake-samples/two/bbd0bbd0_nohash_0.wav +not-wake-samples/two/692a88e6_nohash_1.wav +not-wake-samples/two/b46e8153_nohash_0.wav +not-wake-samples/two/5b09db89_nohash_4.wav +not-wake-samples/two/f17be97f_nohash_2.wav +not-wake-samples/two/f5e5e8b0_nohash_0.wav +not-wake-samples/two/0c2ca723_nohash_0.wav +not-wake-samples/two/bdee441c_nohash_1.wav +not-wake-samples/two/a24582a0_nohash_1.wav +not-wake-samples/two/25132942_nohash_0.wav +not-wake-samples/two/e0315cf6_nohash_3.wav +not-wake-samples/two/71aa5b54_nohash_1.wav +not-wake-samples/two/5c8af87a_nohash_0.wav +not-wake-samples/two/15d83b54_nohash_1.wav +not-wake-samples/two/3ca784ec_nohash_4.wav +not-wake-samples/two/77f185d3_nohash_1.wav +not-wake-samples/two/7de97453_nohash_0.wav +not-wake-samples/two/bc196f81_nohash_0.wav +not-wake-samples/two/173ce2be_nohash_0.wav +not-wake-samples/two/c1e0e8e3_nohash_2.wav +not-wake-samples/two/f953e1af_nohash_1.wav +not-wake-samples/two/e7ea8b76_nohash_2.wav +not-wake-samples/two/8a0457c9_nohash_0.wav +not-wake-samples/two/637c702a_nohash_1.wav +not-wake-samples/two/99a9b015_nohash_0.wav +not-wake-samples/two/56eb74ae_nohash_1.wav +not-wake-samples/two/ad6a46f1_nohash_1.wav +not-wake-samples/two/7f74626f_nohash_2.wav +not-wake-samples/two/b97c9f77_nohash_1.wav +not-wake-samples/two/9b027ecf_nohash_0.wav +not-wake-samples/two/d57febf0_nohash_0.wav +not-wake-samples/two/39999a0f_nohash_1.wav +not-wake-samples/two/1706c35f_nohash_0.wav +not-wake-samples/two/ef2578c0_nohash_1.wav +not-wake-samples/two/28612180_nohash_0.wav +not-wake-samples/two/73af0c50_nohash_0.wav +not-wake-samples/two/39a12648_nohash_4.wav +not-wake-samples/two/db9cd41d_nohash_0.wav +not-wake-samples/two/92037d73_nohash_0.wav +not-wake-samples/two/b1df80c0_nohash_1.wav +not-wake-samples/two/c53b335a_nohash_2.wav +not-wake-samples/two/541e4079_nohash_0.wav +not-wake-samples/two/8eb4a1bf_nohash_0.wav +not-wake-samples/two/229978fd_nohash_1.wav +not-wake-samples/two/1678e6f1_nohash_0.wav +not-wake-samples/two/64f1c742_nohash_0.wav +not-wake-samples/two/1a4259c3_nohash_0.wav +not-wake-samples/two/26e9ae6b_nohash_1.wav +not-wake-samples/two/274c008f_nohash_0.wav +not-wake-samples/two/fd32732a_nohash_1.wav +not-wake-samples/two/ac899eb7_nohash_1.wav +not-wake-samples/two/66aa0f29_nohash_1.wav +not-wake-samples/two/146d97db_nohash_0.wav +not-wake-samples/two/c1d39ce8_nohash_0.wav +not-wake-samples/two/e96a5020_nohash_1.wav +not-wake-samples/two/5195f0ec_nohash_0.wav +not-wake-samples/two/89e59d18_nohash_0.wav +not-wake-samples/two/d0ce2418_nohash_0.wav +not-wake-samples/two/953fe1ad_nohash_1.wav +not-wake-samples/two/92a9c5e6_nohash_3.wav +not-wake-samples/two/5af0ca83_nohash_1.wav +not-wake-samples/two/b84f83d2_nohash_0.wav +not-wake-samples/two/c120e80e_nohash_6.wav +not-wake-samples/two/1df483c0_nohash_0.wav +not-wake-samples/two/4abb2400_nohash_0.wav +not-wake-samples/two/7117fb6d_nohash_0.wav +not-wake-samples/two/9b3ea809_nohash_0.wav +not-wake-samples/two/7cf14c54_nohash_1.wav +not-wake-samples/two/5c237956_nohash_1.wav +not-wake-samples/two/8442ea62_nohash_0.wav +not-wake-samples/two/2039b9c1_nohash_0.wav +not-wake-samples/two/8fe52b97_nohash_1.wav +not-wake-samples/two/471a0925_nohash_1.wav +not-wake-samples/two/8b775397_nohash_1.wav +not-wake-samples/two/94e6864f_nohash_0.wav +not-wake-samples/two/e10e2cbb_nohash_0.wav +not-wake-samples/two/8fe52b97_nohash_0.wav +not-wake-samples/two/4ca37738_nohash_0.wav +not-wake-samples/two/a42a88ff_nohash_1.wav +not-wake-samples/two/9735764a_nohash_0.wav +not-wake-samples/two/f17be97f_nohash_3.wav +not-wake-samples/two/a759efbc_nohash_1.wav +not-wake-samples/two/98582fee_nohash_0.wav +not-wake-samples/two/763188c4_nohash_0.wav +not-wake-samples/two/918a2473_nohash_3.wav +not-wake-samples/two/10ace7eb_nohash_3.wav +not-wake-samples/two/f104f742_nohash_0.wav +not-wake-samples/two/cb802c63_nohash_0.wav +not-wake-samples/two/413bcfe1_nohash_0.wav +not-wake-samples/two/5fe4a278_nohash_1.wav +not-wake-samples/two/28ce0c58_nohash_2.wav +not-wake-samples/two/9f22307d_nohash_0.wav +not-wake-samples/two/c44d2a58_nohash_1.wav +not-wake-samples/two/5b09db89_nohash_0.wav +not-wake-samples/two/45adf84a_nohash_0.wav +not-wake-samples/two/3ff840aa_nohash_0.wav +not-wake-samples/two/937b433e_nohash_1.wav +not-wake-samples/two/462e1919_nohash_0.wav +not-wake-samples/two/9d4bab4f_nohash_0.wav +not-wake-samples/two/56eb74ae_nohash_0.wav +not-wake-samples/two/6c429c7b_nohash_0.wav +not-wake-samples/two/c5e3817f_nohash_0.wav +not-wake-samples/two/37b03ab1_nohash_0.wav +not-wake-samples/two/a3255f5c_nohash_0.wav +not-wake-samples/two/fb7cfe0e_nohash_1.wav +not-wake-samples/two/b4aa9fef_nohash_1.wav +not-wake-samples/two/66276b0e_nohash_0.wav +not-wake-samples/two/02e85b60_nohash_2.wav +not-wake-samples/two/b575b5fb_nohash_1.wav +not-wake-samples/two/c948d727_nohash_4.wav +not-wake-samples/two/d37e4bf1_nohash_1.wav +not-wake-samples/two/08ab8082_nohash_0.wav +not-wake-samples/two/d71ad617_nohash_0.wav +not-wake-samples/two/b9db6e42_nohash_1.wav +not-wake-samples/two/9a7c1f83_nohash_3.wav +not-wake-samples/two/692a88e6_nohash_4.wav +not-wake-samples/two/c6ee87a7_nohash_4.wav +not-wake-samples/two/6a014b29_nohash_0.wav +not-wake-samples/two/6b889021_nohash_1.wav +not-wake-samples/two/7910d292_nohash_0.wav +not-wake-samples/two/8e05039f_nohash_0.wav +not-wake-samples/two/65c73b55_nohash_0.wav +not-wake-samples/two/c4533c47_nohash_1.wav +not-wake-samples/two/413bcfe1_nohash_1.wav +not-wake-samples/two/b83c1acf_nohash_4.wav +not-wake-samples/two/f5733968_nohash_0.wav +not-wake-samples/two/953fe1ad_nohash_0.wav +not-wake-samples/two/b737ee80_nohash_1.wav +not-wake-samples/two/6f5eea74_nohash_0.wav +not-wake-samples/two/c1d39ce8_nohash_2.wav +not-wake-samples/two/96c66ab7_nohash_0.wav +not-wake-samples/two/190821dc_nohash_3.wav +not-wake-samples/two/0616de09_nohash_0.wav +not-wake-samples/two/25132942_nohash_3.wav +not-wake-samples/two/e3b64217_nohash_0.wav +not-wake-samples/two/99a9b015_nohash_2.wav +not-wake-samples/two/e41a903b_nohash_1.wav +not-wake-samples/two/353b4d33_nohash_0.wav +not-wake-samples/two/3cbd76a3_nohash_0.wav +not-wake-samples/two/ab5b211a_nohash_0.wav +not-wake-samples/two/8134f43f_nohash_0.wav +not-wake-samples/two/89ed36ab_nohash_1.wav +not-wake-samples/two/030ec18b_nohash_0.wav +not-wake-samples/two/edd8bfe3_nohash_0.wav +not-wake-samples/two/feb1d305_nohash_0.wav +not-wake-samples/two/6c968bd9_nohash_2.wav +not-wake-samples/two/d90b4138_nohash_2.wav +not-wake-samples/two/439c84f4_nohash_2.wav +not-wake-samples/two/5ba724a7_nohash_0.wav +not-wake-samples/two/41285056_nohash_0.wav +not-wake-samples/two/3d53244b_nohash_2.wav +not-wake-samples/two/39c13eed_nohash_0.wav +not-wake-samples/two/c2df23b2_nohash_0.wav +not-wake-samples/two/834f03fe_nohash_2.wav +not-wake-samples/two/300384f0_nohash_1.wav +not-wake-samples/two/324210dd_nohash_1.wav +not-wake-samples/two/ecbd8d66_nohash_0.wav +not-wake-samples/two/dfb6450b_nohash_0.wav +not-wake-samples/two/1d1fe0a0_nohash_0.wav +not-wake-samples/two/b2e2773a_nohash_1.wav +not-wake-samples/two/9aa21fa9_nohash_4.wav +not-wake-samples/two/126a31d2_nohash_0.wav +not-wake-samples/two/c103a2d5_nohash_0.wav +not-wake-samples/two/ad63d93c_nohash_0.wav +not-wake-samples/two/653a48f5_nohash_0.wav +not-wake-samples/two/4a1e736b_nohash_1.wav +not-wake-samples/two/dc7ec25b_nohash_0.wav +not-wake-samples/two/0132a06d_nohash_2.wav +not-wake-samples/two/625fd898_nohash_2.wav +not-wake-samples/two/b49caed3_nohash_3.wav +not-wake-samples/two/f4386675_nohash_0.wav +not-wake-samples/two/cc6ee39b_nohash_0.wav +not-wake-samples/two/b9f46737_nohash_4.wav +not-wake-samples/two/4d9e07cf_nohash_2.wav +not-wake-samples/two/db8a3397_nohash_1.wav +not-wake-samples/two/7211390b_nohash_3.wav +not-wake-samples/two/e54a0f16_nohash_3.wav +not-wake-samples/two/377e916b_nohash_1.wav +not-wake-samples/two/f17be97f_nohash_4.wav +not-wake-samples/two/f839238a_nohash_0.wav +not-wake-samples/two/563aa4e6_nohash_4.wav +not-wake-samples/two/88120683_nohash_2.wav +not-wake-samples/two/15c371c7_nohash_1.wav +not-wake-samples/two/2d056836_nohash_0.wav +not-wake-samples/two/ece1a95a_nohash_0.wav +not-wake-samples/two/c9b653a0_nohash_2.wav +not-wake-samples/two/21832144_nohash_2.wav +not-wake-samples/two/b97c9f77_nohash_4.wav +not-wake-samples/two/efbc3952_nohash_2.wav +not-wake-samples/two/05cf43ef_nohash_1.wav +not-wake-samples/two/3ac2e76f_nohash_1.wav +not-wake-samples/two/ccb1266b_nohash_0.wav +not-wake-samples/two/857366dd_nohash_0.wav +not-wake-samples/two/214ccb20_nohash_0.wav +not-wake-samples/two/ec545975_nohash_0.wav +not-wake-samples/two/f15a354c_nohash_0.wav +not-wake-samples/two/3bfd30e6_nohash_2.wav +not-wake-samples/two/b0c0197e_nohash_0.wav +not-wake-samples/two/9aa5439d_nohash_0.wav +not-wake-samples/two/8012c69d_nohash_3.wav +not-wake-samples/two/9aa21fa9_nohash_0.wav +not-wake-samples/two/a6d586b7_nohash_4.wav +not-wake-samples/two/060cd039_nohash_1.wav +not-wake-samples/two/24694eb6_nohash_2.wav +not-wake-samples/two/a243fcc2_nohash_0.wav +not-wake-samples/two/3a33d3a4_nohash_1.wav +not-wake-samples/two/d91a159e_nohash_1.wav +not-wake-samples/two/ee483d85_nohash_0.wav +not-wake-samples/two/a583c5b0_nohash_0.wav +not-wake-samples/two/d33df435_nohash_2.wav +not-wake-samples/two/1e4064b8_nohash_0.wav +not-wake-samples/two/b59fe16d_nohash_0.wav +not-wake-samples/two/02746d24_nohash_0.wav +not-wake-samples/two/2589f361_nohash_0.wav +not-wake-samples/two/211ccd2e_nohash_1.wav +not-wake-samples/two/dca2797e_nohash_2.wav +not-wake-samples/two/964e8cfd_nohash_3.wav +not-wake-samples/two/e99d36c8_nohash_1.wav +not-wake-samples/two/1c3f4fac_nohash_0.wav +not-wake-samples/two/3e31dffe_nohash_0.wav +not-wake-samples/two/2c7c33e8_nohash_1.wav +not-wake-samples/two/8523766b_nohash_0.wav +not-wake-samples/two/1a073312_nohash_0.wav +not-wake-samples/two/3ff840aa_nohash_1.wav +not-wake-samples/two/e5e54cee_nohash_0.wav +not-wake-samples/two/c3538de1_nohash_1.wav +not-wake-samples/two/fd395b74_nohash_0.wav +not-wake-samples/two/b2e2773a_nohash_3.wav +not-wake-samples/two/9637f43f_nohash_0.wav +not-wake-samples/two/1b835b87_nohash_1.wav +not-wake-samples/two/7211390b_nohash_0.wav +not-wake-samples/two/ced4e2a1_nohash_0.wav +not-wake-samples/two/7e6bd776_nohash_1.wav +not-wake-samples/two/8830e17f_nohash_1.wav +not-wake-samples/two/3bc21161_nohash_4.wav +not-wake-samples/two/07363607_nohash_0.wav +not-wake-samples/two/6c429c7b_nohash_1.wav +not-wake-samples/two/563aa4e6_nohash_3.wav +not-wake-samples/two/dcc012ec_nohash_1.wav +not-wake-samples/two/cb2929ce_nohash_1.wav +not-wake-samples/two/3c257192_nohash_0.wav +not-wake-samples/two/a2fefcb4_nohash_2.wav +not-wake-samples/two/f35eedd7_nohash_0.wav +not-wake-samples/two/36050ef3_nohash_0.wav +not-wake-samples/two/f47d644e_nohash_0.wav +not-wake-samples/two/65f2531f_nohash_0.wav +not-wake-samples/two/35c8fa78_nohash_0.wav +not-wake-samples/two/c0f8f4df_nohash_0.wav +not-wake-samples/two/a6285644_nohash_0.wav +not-wake-samples/two/f5e5e8b0_nohash_1.wav +not-wake-samples/two/61bcb275_nohash_0.wav +not-wake-samples/two/5c8af87a_nohash_3.wav +not-wake-samples/two/31d31fa0_nohash_0.wav +not-wake-samples/two/37a3cd33_nohash_0.wav +not-wake-samples/two/5fb88f4c_nohash_1.wav +not-wake-samples/two/41777abb_nohash_2.wav +not-wake-samples/two/abbfc3b4_nohash_1.wav +not-wake-samples/two/d874a786_nohash_0.wav +not-wake-samples/two/30802c5d_nohash_1.wav +not-wake-samples/two/0819edb0_nohash_0.wav +not-wake-samples/two/b19f7f5f_nohash_1.wav +not-wake-samples/two/30065f33_nohash_0.wav +not-wake-samples/two/fa7895de_nohash_2.wav +not-wake-samples/two/1993db46_nohash_0.wav +not-wake-samples/two/96ab6565_nohash_4.wav +not-wake-samples/two/cb8f8307_nohash_7.wav +not-wake-samples/two/3f2b358d_nohash_1.wav +not-wake-samples/two/0f250098_nohash_0.wav +not-wake-samples/two/f2b8fc18_nohash_1.wav +not-wake-samples/two/f953e1af_nohash_4.wav +not-wake-samples/two/1daa5ada_nohash_2.wav +not-wake-samples/two/b11a05d2_nohash_0.wav +not-wake-samples/two/e4b02540_nohash_1.wav +not-wake-samples/two/8910e5ef_nohash_1.wav +not-wake-samples/two/71904de3_nohash_1.wav +not-wake-samples/two/96a48d28_nohash_2.wav +not-wake-samples/two/8134f43f_nohash_2.wav +not-wake-samples/two/5fc3ed24_nohash_0.wav +not-wake-samples/two/6f2f57c1_nohash_1.wav +not-wake-samples/two/716757ce_nohash_1.wav +not-wake-samples/two/340c8b10_nohash_0.wav +not-wake-samples/two/d8c314c0_nohash_1.wav +not-wake-samples/two/bc065a17_nohash_0.wav +not-wake-samples/two/aa62fdad_nohash_1.wav +not-wake-samples/two/f1b35ace_nohash_0.wav +not-wake-samples/two/9acd0254_nohash_1.wav +not-wake-samples/two/f00180d0_nohash_2.wav +not-wake-samples/two/c5c60d8d_nohash_0.wav +not-wake-samples/two/742d6431_nohash_0.wav +not-wake-samples/two/7ea032f3_nohash_0.wav +not-wake-samples/two/18c54a68_nohash_0.wav +not-wake-samples/two/8012c69d_nohash_4.wav +not-wake-samples/two/dbb40d24_nohash_2.wav +not-wake-samples/two/a50a98d2_nohash_0.wav +not-wake-samples/two/36746d7f_nohash_2.wav +not-wake-samples/two/9e2ce5e3_nohash_0.wav +not-wake-samples/two/042186b8_nohash_1.wav +not-wake-samples/two/e1469561_nohash_3.wav +not-wake-samples/two/692a88e6_nohash_3.wav +not-wake-samples/two/3847619e_nohash_0.wav +not-wake-samples/two/1b835b87_nohash_0.wav +not-wake-samples/two/dea820ce_nohash_2.wav +not-wake-samples/two/7211390b_nohash_2.wav +not-wake-samples/two/e1469561_nohash_1.wav +not-wake-samples/two/b433332a_nohash_1.wav +not-wake-samples/two/15b0c947_nohash_3.wav +not-wake-samples/two/c79159aa_nohash_0.wav +not-wake-samples/two/5c39594f_nohash_0.wav +not-wake-samples/two/e5d2e09d_nohash_0.wav +not-wake-samples/two/cb8f8307_nohash_6.wav +not-wake-samples/two/190821dc_nohash_0.wav +not-wake-samples/two/42beb5eb_nohash_0.wav +not-wake-samples/two/41474817_nohash_0.wav +not-wake-samples/two/6727b579_nohash_0.wav +not-wake-samples/two/15b0c947_nohash_0.wav +not-wake-samples/two/dabd70c2_nohash_1.wav +not-wake-samples/two/fad7a69a_nohash_0.wav +not-wake-samples/two/c1eebc0b_nohash_0.wav +not-wake-samples/two/380abbad_nohash_1.wav +not-wake-samples/two/82c6d220_nohash_0.wav +not-wake-samples/two/763188c4_nohash_4.wav +not-wake-samples/two/7c1d8533_nohash_1.wav +not-wake-samples/two/692a88e6_nohash_2.wav +not-wake-samples/two/19b05529_nohash_0.wav +not-wake-samples/two/aff582a1_nohash_2.wav +not-wake-samples/two/d486fb84_nohash_0.wav +not-wake-samples/two/6794a793_nohash_0.wav +not-wake-samples/two/56eb74ae_nohash_3.wav +not-wake-samples/two/f00180d0_nohash_3.wav +not-wake-samples/two/3bc21161_nohash_0.wav +not-wake-samples/two/a42a88ff_nohash_0.wav +not-wake-samples/two/745a8e32_nohash_0.wav +not-wake-samples/two/37a3cd33_nohash_2.wav +not-wake-samples/two/6b889021_nohash_0.wav +not-wake-samples/two/e7117d00_nohash_0.wav +not-wake-samples/two/1b459024_nohash_0.wav +not-wake-samples/two/5184ed3e_nohash_0.wav +not-wake-samples/two/3dfd6c23_nohash_0.wav +not-wake-samples/two/c24d96eb_nohash_1.wav +not-wake-samples/two/43f57297_nohash_0.wav +not-wake-samples/two/340c8b10_nohash_1.wav +not-wake-samples/two/716757ce_nohash_2.wav +not-wake-samples/two/712e4d58_nohash_2.wav +not-wake-samples/two/c0c701f1_nohash_0.wav +not-wake-samples/two/35d1b6ee_nohash_4.wav +not-wake-samples/two/cd85758f_nohash_4.wav +not-wake-samples/two/af130f12_nohash_0.wav +not-wake-samples/two/573cdb8a_nohash_0.wav +not-wake-samples/two/f19c1390_nohash_2.wav +not-wake-samples/two/ec201020_nohash_2.wav +not-wake-samples/two/56eb74ae_nohash_2.wav +not-wake-samples/two/11b1df78_nohash_0.wav +not-wake-samples/two/dc75148d_nohash_0.wav +not-wake-samples/two/a5d485dc_nohash_0.wav +not-wake-samples/two/7c1d8533_nohash_2.wav +not-wake-samples/two/d0faf7e4_nohash_2.wav +not-wake-samples/two/82b99576_nohash_0.wav +not-wake-samples/two/5184ed3e_nohash_1.wav +not-wake-samples/two/0137b3f4_nohash_0.wav +not-wake-samples/two/bdee441c_nohash_3.wav +not-wake-samples/two/84d1e469_nohash_0.wav +not-wake-samples/two/611d2b50_nohash_2.wav +not-wake-samples/two/e41a903b_nohash_4.wav +not-wake-samples/two/80fe1dc7_nohash_0.wav +not-wake-samples/two/1ecfb537_nohash_4.wav +not-wake-samples/two/a2fefcb4_nohash_0.wav +not-wake-samples/two/a4c938ce_nohash_0.wav +not-wake-samples/two/fbdc07bb_nohash_0.wav +not-wake-samples/two/5de8f2f0_nohash_0.wav +not-wake-samples/two/cc6bae0d_nohash_0.wav +not-wake-samples/two/a108341b_nohash_0.wav +not-wake-samples/two/439c84f4_nohash_3.wav +not-wake-samples/two/dca2797e_nohash_0.wav +not-wake-samples/two/884ae8e1_nohash_1.wav +not-wake-samples/two/aff582a1_nohash_3.wav +not-wake-samples/two/83f9c4ab_nohash_0.wav +not-wake-samples/two/aff582a1_nohash_0.wav +not-wake-samples/two/0362539c_nohash_0.wav +not-wake-samples/two/6a1908f8_nohash_1.wav +not-wake-samples/two/2da58b32_nohash_3.wav +not-wake-samples/two/10c6d873_nohash_0.wav +not-wake-samples/two/b49caed3_nohash_1.wav +not-wake-samples/two/bcdaa7a9_nohash_0.wav +not-wake-samples/two/ffd2ba2f_nohash_1.wav +not-wake-samples/two/1bc45db9_nohash_0.wav +not-wake-samples/two/d9462202_nohash_0.wav +not-wake-samples/two/9f6fbdb4_nohash_0.wav +not-wake-samples/two/adec6a94_nohash_1.wav +not-wake-samples/two/cc6ee39b_nohash_2.wav +not-wake-samples/two/28612180_nohash_3.wav +not-wake-samples/two/4a4e28f1_nohash_1.wav +not-wake-samples/two/ab1299bb_nohash_0.wav +not-wake-samples/two/e0344f60_nohash_0.wav +not-wake-samples/two/257e17e0_nohash_0.wav +not-wake-samples/two/05cf43ef_nohash_0.wav +not-wake-samples/two/f8f60f59_nohash_0.wav +not-wake-samples/two/439c84f4_nohash_4.wav +not-wake-samples/two/0ac15fe9_nohash_0.wav +not-wake-samples/two/9190045a_nohash_0.wav +not-wake-samples/two/9a69672b_nohash_3.wav +not-wake-samples/two/c120e80e_nohash_1.wav +not-wake-samples/two/418e7158_nohash_0.wav +not-wake-samples/two/75915c90_nohash_0.wav +not-wake-samples/two/9db2bfe9_nohash_1.wav +not-wake-samples/two/ffd2ba2f_nohash_4.wav +not-wake-samples/two/f92e49f3_nohash_3.wav +not-wake-samples/two/65ec06e5_nohash_1.wav +not-wake-samples/two/d37e4bf1_nohash_0.wav +not-wake-samples/two/5b09db89_nohash_3.wav +not-wake-samples/two/c1b7c224_nohash_0.wav +not-wake-samples/two/3bfd30e6_nohash_0.wav +not-wake-samples/two/1cc80e39_nohash_0.wav +not-wake-samples/two/d1214f15_nohash_0.wav +not-wake-samples/two/3bc21161_nohash_1.wav +not-wake-samples/two/92a9c5e6_nohash_1.wav +not-wake-samples/two/00b01445_nohash_0.wav +not-wake-samples/two/a8e25ebb_nohash_0.wav +not-wake-samples/two/7318280c_nohash_0.wav +not-wake-samples/two/837f7378_nohash_1.wav +not-wake-samples/two/a3502f15_nohash_0.wav +not-wake-samples/two/88e90bc1_nohash_1.wav +not-wake-samples/two/625fd898_nohash_0.wav +not-wake-samples/two/3cdecb0b_nohash_1.wav +not-wake-samples/two/adb45ef2_nohash_0.wav +not-wake-samples/two/708b8d51_nohash_0.wav +not-wake-samples/two/49af4432_nohash_4.wav +not-wake-samples/two/8f811bbc_nohash_0.wav +not-wake-samples/two/15c563d7_nohash_2.wav +not-wake-samples/two/b36c27c2_nohash_0.wav +not-wake-samples/two/5705a0f9_nohash_0.wav +not-wake-samples/two/50a7d406_nohash_0.wav +not-wake-samples/two/da7689f1_nohash_0.wav +not-wake-samples/two/db8a3397_nohash_2.wav +not-wake-samples/two/d57febf0_nohash_1.wav +not-wake-samples/two/34805883_nohash_0.wav +not-wake-samples/two/ae04cdbe_nohash_2.wav +not-wake-samples/two/df038de4_nohash_0.wav +not-wake-samples/two/850e2222_nohash_0.wav +not-wake-samples/two/3209ec42_nohash_0.wav +not-wake-samples/two/a6d586b7_nohash_1.wav +not-wake-samples/two/5c8af87a_nohash_4.wav +not-wake-samples/two/9080f6d3_nohash_0.wav +not-wake-samples/two/274c008f_nohash_2.wav +not-wake-samples/two/9aa21fa9_nohash_1.wav +not-wake-samples/two/e41a903b_nohash_2.wav +not-wake-samples/two/8e884ec4_nohash_1.wav +not-wake-samples/two/5ab63b0a_nohash_1.wav +not-wake-samples/two/56eb74ae_nohash_4.wav +not-wake-samples/two/1c3f4fac_nohash_1.wav +not-wake-samples/two/5705a0f9_nohash_2.wav +not-wake-samples/two/d5ca80c6_nohash_3.wav +not-wake-samples/two/fce65496_nohash_1.wav +not-wake-samples/two/ccea893d_nohash_1.wav +not-wake-samples/two/fa7895de_nohash_3.wav +not-wake-samples/two/e3e49931_nohash_0.wav +not-wake-samples/two/656e8bb3_nohash_1.wav +not-wake-samples/two/28e47b1a_nohash_4.wav +not-wake-samples/two/d33df435_nohash_0.wav +not-wake-samples/two/333784b7_nohash_2.wav +not-wake-samples/two/e900b652_nohash_1.wav +not-wake-samples/two/3df9a3d4_nohash_0.wav +not-wake-samples/two/24b82192_nohash_0.wav +not-wake-samples/two/a1dd919f_nohash_0.wav +not-wake-samples/two/772db621_nohash_1.wav +not-wake-samples/two/44260689_nohash_0.wav +not-wake-samples/two/f638a812_nohash_0.wav +not-wake-samples/two/b4aa9fef_nohash_2.wav +not-wake-samples/two/b87bdb22_nohash_4.wav +not-wake-samples/two/8ed25ef8_nohash_1.wav +not-wake-samples/two/35d1b6ee_nohash_1.wav +not-wake-samples/two/21e8c417_nohash_0.wav +not-wake-samples/two/b487da60_nohash_0.wav +not-wake-samples/two/7211390b_nohash_1.wav +not-wake-samples/two/41777abb_nohash_0.wav +not-wake-samples/two/6727b579_nohash_2.wav +not-wake-samples/two/8830e17f_nohash_3.wav +not-wake-samples/two/c2d15ea5_nohash_0.wav +not-wake-samples/two/4c841771_nohash_0.wav +not-wake-samples/two/cae62f38_nohash_0.wav +not-wake-samples/two/29fb33da_nohash_0.wav +not-wake-samples/two/c93d5e22_nohash_3.wav +not-wake-samples/two/4d4e17f5_nohash_0.wav +not-wake-samples/two/19e98e89_nohash_0.wav +not-wake-samples/two/e53139ad_nohash_2.wav +not-wake-samples/two/8056e897_nohash_0.wav +not-wake-samples/two/210f3aa9_nohash_1.wav +not-wake-samples/two/66aa0f29_nohash_0.wav +not-wake-samples/two/24694eb6_nohash_0.wav +not-wake-samples/two/e14d3db8_nohash_0.wav +not-wake-samples/two/6a1908f8_nohash_0.wav +not-wake-samples/two/b575b5fb_nohash_0.wav +not-wake-samples/two/e41a903b_nohash_3.wav +not-wake-samples/two/3a33d3a4_nohash_0.wav +not-wake-samples/two/31267b59_nohash_1.wav +not-wake-samples/two/5e3dde6b_nohash_4.wav +not-wake-samples/two/1338a799_nohash_1.wav +not-wake-samples/two/d197e3ae_nohash_1.wav +not-wake-samples/two/10467b06_nohash_0.wav +not-wake-samples/two/c4cfbe43_nohash_0.wav +not-wake-samples/two/5f8e50a0_nohash_0.wav +not-wake-samples/two/10ace7eb_nohash_2.wav +not-wake-samples/two/264f471d_nohash_1.wav +not-wake-samples/two/83c9e7e6_nohash_1.wav +not-wake-samples/two/834f03fe_nohash_3.wav +not-wake-samples/two/d9b8fab2_nohash_0.wav +not-wake-samples/two/35d1b6ee_nohash_2.wav +not-wake-samples/two/80c45ed6_nohash_0.wav +not-wake-samples/two/bab36420_nohash_3.wav +not-wake-samples/two/b87bdb22_nohash_2.wav +not-wake-samples/two/b575b5fb_nohash_2.wav +not-wake-samples/two/a24582a0_nohash_0.wav +not-wake-samples/two/471a0925_nohash_0.wav +not-wake-samples/two/7846fd85_nohash_3.wav +not-wake-samples/two/48a8a69d_nohash_0.wav +not-wake-samples/two/72d75d96_nohash_0.wav +not-wake-samples/two/6e8b9b7b_nohash_1.wav +not-wake-samples/two/122c5aa7_nohash_3.wav +not-wake-samples/two/17c94b23_nohash_0.wav +not-wake-samples/two/1ffd513b_nohash_0.wav +not-wake-samples/two/402e2977_nohash_0.wav +not-wake-samples/two/88120683_nohash_1.wav +not-wake-samples/two/964e8cfd_nohash_1.wav +not-wake-samples/two/1678e6f1_nohash_1.wav +not-wake-samples/two/a8688b67_nohash_0.wav +not-wake-samples/two/627c0bec_nohash_0.wav +not-wake-samples/two/0f7dc557_nohash_0.wav +not-wake-samples/two/9f6fbdb4_nohash_1.wav +not-wake-samples/two/61a0d340_nohash_0.wav +not-wake-samples/two/8f4c551f_nohash_3.wav +not-wake-samples/two/ced835d3_nohash_0.wav +not-wake-samples/two/cd7f8c1b_nohash_1.wav +not-wake-samples/two/b7a6f709_nohash_0.wav +not-wake-samples/two/122c5aa7_nohash_0.wav +not-wake-samples/two/890e4ee2_nohash_0.wav +not-wake-samples/two/6c0f6493_nohash_1.wav +not-wake-samples/two/ce7a8e92_nohash_1.wav +not-wake-samples/two/ef2a3cfb_nohash_0.wav +not-wake-samples/two/6982fc2a_nohash_0.wav +not-wake-samples/two/a4baac4e_nohash_0.wav +not-wake-samples/two/748cb308_nohash_0.wav +not-wake-samples/two/493392c6_nohash_1.wav +not-wake-samples/two/924c1a04_nohash_0.wav +not-wake-samples/two/c2d74084_nohash_0.wav +not-wake-samples/two/106a6183_nohash_2.wav +not-wake-samples/two/88053e92_nohash_1.wav +not-wake-samples/two/5b09db89_nohash_1.wav +not-wake-samples/two/96ab6565_nohash_0.wav +not-wake-samples/two/e71b4ce6_nohash_1.wav +not-wake-samples/two/af8b2f2c_nohash_0.wav +not-wake-samples/two/ecef25ba_nohash_2.wav +not-wake-samples/two/617de221_nohash_0.wav +not-wake-samples/two/b959cd0c_nohash_3.wav +not-wake-samples/two/eb3d8eb1_nohash_0.wav +not-wake-samples/two/c634a189_nohash_3.wav +not-wake-samples/two/62ff07ef_nohash_2.wav +not-wake-samples/two/d4d898d7_nohash_0.wav +not-wake-samples/two/1093c8e7_nohash_0.wav +not-wake-samples/two/caa7feaf_nohash_0.wav +not-wake-samples/two/61bcb275_nohash_1.wav +not-wake-samples/two/b55a09be_nohash_0.wav +not-wake-samples/two/ced835d3_nohash_2.wav +not-wake-samples/two/686d030b_nohash_2.wav +not-wake-samples/two/813b82a6_nohash_0.wav +not-wake-samples/two/3cbd76a3_nohash_1.wav +not-wake-samples/two/99081f4d_nohash_0.wav +not-wake-samples/two/493392c6_nohash_0.wav +not-wake-samples/two/24befdb3_nohash_2.wav +not-wake-samples/two/a1cff772_nohash_4.wav +not-wake-samples/two/333784b7_nohash_4.wav +not-wake-samples/two/8830e17f_nohash_2.wav +not-wake-samples/two/105a0eea_nohash_2.wav +not-wake-samples/two/439c84f4_nohash_1.wav +not-wake-samples/two/d952a17e_nohash_1.wav +not-wake-samples/two/a7545b9f_nohash_0.wav +not-wake-samples/two/692a88e6_nohash_0.wav +not-wake-samples/two/c0445658_nohash_0.wav +not-wake-samples/two/3143fdff_nohash_0.wav +not-wake-samples/two/6e8b9b7b_nohash_0.wav +not-wake-samples/two/b3327675_nohash_0.wav +not-wake-samples/two/b7a0754f_nohash_0.wav +not-wake-samples/two/3e31dffe_nohash_2.wav +not-wake-samples/two/bab36420_nohash_2.wav +not-wake-samples/two/9886d8bf_nohash_3.wav +not-wake-samples/two/2df590cd_nohash_1.wav +not-wake-samples/two/71904de3_nohash_0.wav +not-wake-samples/two/529eda42_nohash_1.wav +not-wake-samples/two/dd086776_nohash_0.wav +not-wake-samples/two/402e2977_nohash_1.wav +not-wake-samples/two/c6a23ff5_nohash_1.wav +not-wake-samples/two/1a5b9ca4_nohash_0.wav +not-wake-samples/two/ec201020_nohash_1.wav +not-wake-samples/two/dbaf8fc6_nohash_1.wav +not-wake-samples/two/0b77ee66_nohash_0.wav +not-wake-samples/two/b00c4c53_nohash_0.wav +not-wake-samples/two/3402e488_nohash_1.wav +not-wake-samples/two/7195ffa6_nohash_0.wav +not-wake-samples/two/3ca784ec_nohash_0.wav +not-wake-samples/two/0487ba9b_nohash_0.wav +not-wake-samples/two/d8c52371_nohash_0.wav +not-wake-samples/two/34805883_nohash_1.wav +not-wake-samples/two/8c888bbb_nohash_0.wav +not-wake-samples/two/ee483d85_nohash_2.wav +not-wake-samples/two/48bdc11c_nohash_0.wav +not-wake-samples/two/cc71bada_nohash_0.wav +not-wake-samples/two/11a022ba_nohash_0.wav +not-wake-samples/two/8e05039f_nohash_4.wav +not-wake-samples/two/f953e1af_nohash_2.wav +not-wake-samples/two/888a0c49_nohash_2.wav +not-wake-samples/two/0474c92a_nohash_0.wav +not-wake-samples/two/a1cff772_nohash_3.wav +not-wake-samples/two/8494fba8_nohash_1.wav +not-wake-samples/two/653a48f5_nohash_1.wav +not-wake-samples/two/1ecfb537_nohash_1.wav +not-wake-samples/two/2bdbe5f7_nohash_0.wav +not-wake-samples/two/28ed6bc9_nohash_2.wav +not-wake-samples/two/da584bc0_nohash_4.wav +not-wake-samples/two/b87bdb22_nohash_3.wav +not-wake-samples/two/4407ba92_nohash_0.wav +not-wake-samples/two/d90b4138_nohash_1.wav +not-wake-samples/two/cd85758f_nohash_2.wav +not-wake-samples/two/ec7d1151_nohash_0.wav +not-wake-samples/two/f06190c1_nohash_0.wav +not-wake-samples/two/dea820ce_nohash_1.wav +not-wake-samples/two/cfde27ba_nohash_0.wav +not-wake-samples/two/364f979f_nohash_0.wav +not-wake-samples/two/2cf28b70_nohash_2.wav +not-wake-samples/two/8601f33b_nohash_0.wav +not-wake-samples/two/9587481f_nohash_0.wav +not-wake-samples/two/324210dd_nohash_3.wav +not-wake-samples/two/49af4432_nohash_0.wav +not-wake-samples/two/2da58b32_nohash_2.wav +not-wake-samples/two/44f68a83_nohash_0.wav +not-wake-samples/two/ce49cb60_nohash_1.wav +not-wake-samples/two/528f9242_nohash_0.wav +not-wake-samples/two/264f471d_nohash_3.wav +not-wake-samples/two/210f3aa9_nohash_0.wav +not-wake-samples/two/9d050657_nohash_0.wav +not-wake-samples/two/8f0d3c27_nohash_1.wav +not-wake-samples/two/e96a5020_nohash_0.wav +not-wake-samples/two/964e8cfd_nohash_0.wav +not-wake-samples/two/e9b61425_nohash_0.wav +not-wake-samples/two/c2aeb59d_nohash_0.wav +not-wake-samples/two/af405b69_nohash_0.wav +not-wake-samples/two/ab3f0c1b_nohash_0.wav +not-wake-samples/two/f3210686_nohash_0.wav +not-wake-samples/two/da584bc0_nohash_3.wav +not-wake-samples/two/f2a90886_nohash_2.wav +not-wake-samples/two/dbb40d24_nohash_0.wav +not-wake-samples/two/5fadb538_nohash_4.wav +not-wake-samples/two/4a1e736b_nohash_0.wav +not-wake-samples/two/f8f60f59_nohash_4.wav +not-wake-samples/two/c120e80e_nohash_0.wav +not-wake-samples/two/06076b6b_nohash_0.wav +not-wake-samples/two/52bfbce8_nohash_0.wav +not-wake-samples/two/eb609143_nohash_0.wav +not-wake-samples/two/5fadb538_nohash_2.wav +not-wake-samples/two/aac5b7c1_nohash_0.wav +not-wake-samples/two/50033893_nohash_1.wav +not-wake-samples/two/106a6183_nohash_3.wav +not-wake-samples/two/014f9f65_nohash_0.wav +not-wake-samples/two/2d92f18b_nohash_2.wav +not-wake-samples/two/953fe1ad_nohash_3.wav +not-wake-samples/two/1706c35f_nohash_2.wav +not-wake-samples/two/1626bc5a_nohash_1.wav +not-wake-samples/two/95299b6c_nohash_2.wav +not-wake-samples/two/eb67fcbc_nohash_0.wav +not-wake-samples/two/5e1b34a6_nohash_0.wav +not-wake-samples/two/0137b3f4_nohash_4.wav +not-wake-samples/two/520b2c17_nohash_0.wav +not-wake-samples/two/035de8fe_nohash_0.wav +not-wake-samples/two/99e6cab8_nohash_1.wav +not-wake-samples/two/28ce0c58_nohash_0.wav +not-wake-samples/two/229978fd_nohash_4.wav +not-wake-samples/two/5e033479_nohash_0.wav +not-wake-samples/two/7303215d_nohash_1.wav +not-wake-samples/two/8dd24423_nohash_1.wav +not-wake-samples/two/fb7cfe0e_nohash_0.wav +not-wake-samples/two/cb8f8307_nohash_1.wav +not-wake-samples/two/3d3ddaf8_nohash_2.wav +not-wake-samples/two/e8e960fd_nohash_1.wav +not-wake-samples/two/e0315cf6_nohash_2.wav +not-wake-samples/two/d9e9f554_nohash_1.wav +not-wake-samples/two/102192fd_nohash_1.wav +not-wake-samples/two/380abbad_nohash_0.wav +not-wake-samples/two/3ea77ede_nohash_0.wav +not-wake-samples/two/d750966e_nohash_0.wav +not-wake-samples/two/38d78313_nohash_0.wav +not-wake-samples/two/dce05676_nohash_1.wav +not-wake-samples/two/2dcb6848_nohash_0.wav +not-wake-samples/two/f0ebef1b_nohash_0.wav +not-wake-samples/two/f5733968_nohash_4.wav +not-wake-samples/two/7f74626f_nohash_1.wav +not-wake-samples/two/3d53244b_nohash_3.wav +not-wake-samples/two/8281a2a8_nohash_0.wav +not-wake-samples/two/5eb5fc74_nohash_0.wav +not-wake-samples/two/d0faf7e4_nohash_0.wav +not-wake-samples/two/15c371c7_nohash_0.wav +not-wake-samples/two/e71b4ce6_nohash_0.wav +not-wake-samples/two/b6091c84_nohash_0.wav +not-wake-samples/two/9d171fee_nohash_2.wav +not-wake-samples/two/2bfe70ef_nohash_1.wav +not-wake-samples/two/99a9b015_nohash_1.wav +not-wake-samples/two/e41a903b_nohash_0.wav +not-wake-samples/two/c0e8f5a1_nohash_1.wav +not-wake-samples/two/035de8fe_nohash_1.wav +not-wake-samples/two/ced835d3_nohash_1.wav +not-wake-samples/two/cb2929ce_nohash_6.wav +not-wake-samples/two/c6ca5d01_nohash_0.wav +not-wake-samples/two/977a3be4_nohash_0.wav +not-wake-samples/two/d91a159e_nohash_0.wav +not-wake-samples/two/4b39347d_nohash_1.wav +not-wake-samples/two/1678e6f1_nohash_2.wav +not-wake-samples/two/15b0c947_nohash_1.wav +not-wake-samples/two/b3bb4dd6_nohash_0.wav +not-wake-samples/two/b8c48ffb_nohash_1.wav +not-wake-samples/two/8c4854bc_nohash_0.wav +not-wake-samples/two/1b4c9b89_nohash_3.wav +not-wake-samples/two/953fe1ad_nohash_2.wav +not-wake-samples/two/069ab0d5_nohash_0.wav +not-wake-samples/two/30f31e42_nohash_0.wav +not-wake-samples/two/10ace7eb_nohash_4.wav +not-wake-samples/two/f5733968_nohash_3.wav +not-wake-samples/two/61a9f72a_nohash_0.wav +not-wake-samples/two/9a3f97f8_nohash_0.wav +not-wake-samples/two/29fb33da_nohash_3.wav +not-wake-samples/two/15d83b54_nohash_0.wav +not-wake-samples/two/9d171fee_nohash_1.wav +not-wake-samples/two/da4ef063_nohash_0.wav +not-wake-samples/two/ec201020_nohash_4.wav +not-wake-samples/two/b43c8f2f_nohash_0.wav +not-wake-samples/two/3006c271_nohash_0.wav +not-wake-samples/two/89ed36ab_nohash_0.wav +not-wake-samples/two/3e549219_nohash_0.wav +not-wake-samples/two/cae62f38_nohash_1.wav +not-wake-samples/two/d6360b32_nohash_0.wav +not-wake-samples/two/e53139ad_nohash_1.wav +not-wake-samples/two/7add4c5f_nohash_0.wav +not-wake-samples/two/a591c2ea_nohash_0.wav +not-wake-samples/two/b4bef564_nohash_0.wav +not-wake-samples/two/ea7ca285_nohash_0.wav +not-wake-samples/two/bf5d409d_nohash_1.wav +not-wake-samples/two/d90b4138_nohash_3.wav +not-wake-samples/two/88f8a99c_nohash_0.wav +not-wake-samples/two/fce65496_nohash_0.wav +not-wake-samples/two/c5c60d8d_nohash_2.wav +not-wake-samples/two/31270cb2_nohash_0.wav +not-wake-samples/two/f104f742_nohash_1.wav +not-wake-samples/two/facd97c0_nohash_0.wav +not-wake-samples/two/89f3ab7d_nohash_0.wav +not-wake-samples/two/888a0c49_nohash_0.wav +not-wake-samples/two/e7ea8b76_nohash_3.wav +not-wake-samples/two/333784b7_nohash_0.wav +not-wake-samples/two/da584bc0_nohash_0.wav +not-wake-samples/two/80fe1dc7_nohash_1.wav +not-wake-samples/two/36050ef3_nohash_2.wav +not-wake-samples/two/311fde72_nohash_1.wav +not-wake-samples/two/9ff2d2f4_nohash_1.wav +not-wake-samples/two/cb8f8307_nohash_0.wav +not-wake-samples/two/7846fd85_nohash_0.wav +room-noise/sample-12.wav +room-noise/sample-07.wav +room-noise/sample-10.wav +room-noise/sample-08.wav +room-noise/sample-19.wav +room-noise/sample-21.wav +room-noise/sample-25.wav +room-noise/sample-13.wav +room-noise/sample-24.wav +room-noise/sample-26.wav +room-noise/sample-23.wav +room-noise/sample-16.wav +room-noise/sample-27.wav +room-noise/sample-02.wav +room-noise/sample-15.wav +room-noise/sample-22.wav +room-noise/sample-14.wav +room-noise/sample-11.wav +room-noise/sample-17.wav +room-noise/sample-06.wav +room-noise/sample-04.wav +room-noise/sample-03.wav +room-noise/sample-18.wav +room-noise/sample-20.wav +room-noise/sample-09.wav +room-noise/sample-05.wav +room-noise/sample-01.wav +room-noise/sample-39.wav +room-noise/sample-65.wav +room-noise/sample-61.wav +room-noise/sample-51.wav +room-noise/sample-57.wav +room-noise/sample-40.wav +room-noise/sample-50.wav +room-noise/sample-32.wav +room-noise/sample-53.wav +room-noise/sample-55.wav +room-noise/sample-37.wav +room-noise/sample-36.wav +room-noise/sample-71.wav +room-noise/sample-85.wav +room-noise/sample-35.wav +room-noise/sample-31.wav +room-noise/sample-67.wav +room-noise/sample-72.wav +room-noise/sample-54.wav +room-noise/sample-49.wav +room-noise/sample-29.wav +room-noise/sample-34.wav +room-noise/sample-33.wav +room-noise/sample-42.wav +room-noise/sample-76.wav +room-noise/sample-41.wav +room-noise/sample-66.wav +room-noise/sample-84.wav +room-noise/sample-47.wav +room-noise/sample-59.wav +room-noise/sample-68.wav +room-noise/sample-80.wav +room-noise/sample-73.wav +room-noise/sample-30.wav +room-noise/sample-69.wav +room-noise/sample-52.wav +room-noise/sample-58.wav +room-noise/sample-60.wav +room-noise/sample-70.wav +room-noise/sample-81.wav +room-noise/sample-56.wav +room-noise/sample-86.wav +room-noise/sample-63.wav +room-noise/sample-79.wav +room-noise/sample-82.wav +room-noise/sample-28.wav +room-noise/sample-46.wav +room-noise/sample-83.wav +room-noise/sample-45.wav +room-noise/sample-62.wav +room-noise/sample-48.wav +room-noise/sample-44.wav +room-noise/sample-38.wav +room-noise/sample-43.wav +room-noise/sample-64.wav +room-noise/sample-75.wav +room-noise/sample-74.wav +room-noise/sample-78.wav +room-noise/sample-77.wav +room-noise/room_01_-01.wav +room-noise/room_01_-11.wav +room-noise/room_01_-14.wav +room-noise/room_01_-09.wav +room-noise/room_01_-19.wav +room-noise/room_01_-18.wav +room-noise/room_01_-05.wav +room-noise/room_01_-10.wav +room-noise/room_01_-22.wav +room-noise/room_01_-12.wav +room-noise/room_01_-06.wav +room-noise/room_01_-23.wav +room-noise/room_01_-21.wav +room-noise/room_01_-03.wav +room-noise/room_01_-15.wav +room-noise/room_01_-20.wav +room-noise/room_01_-24.wav +room-noise/room_01_-02.wav +room-noise/room_01_-25.wav +room-noise/room_01_-04.wav +room-noise/room_01_-16.wav +room-noise/room_01_-17.wav +room-noise/room_01_-07.wav +room-noise/room_01_-26.wav +room-noise/room_01_-08.wav +room-noise/room_01_-13.wav +room-noise/room_02_-11.wav +room-noise/room_02_-14.wav +room-noise/room_02_-17.wav +room-noise/room_02_-21.wav +room-noise/room_02_-22.wav +room-noise/room_02_-39.wav +room-noise/room_02_-16.wav +room-noise/room_02_-24.wav +room-noise/room_02_-10.wav +room-noise/room_02_-18.wav +room-noise/room_02_-20.wav +room-noise/room_02_-06.wav +room-noise/room_02_-40.wav +room-noise/room_02_-12.wav +room-noise/room_02_-38.wav +room-noise/room_02_-13.wav +room-noise/room_02_-04.wav +room-noise/room_02_-08.wav +room-noise/room_02_-03.wav +room-noise/room_02_-33.wav +room-noise/room_02_-26.wav +room-noise/room_02_-15.wav +room-noise/room_02_-36.wav +room-noise/room_02_-02.wav +room-noise/room_02_-31.wav +room-noise/room_02_-32.wav +room-noise/room_02_-09.wav +room-noise/room_02_-01.wav +room-noise/room_02_-41.wav +room-noise/room_02_-23.wav +room-noise/room_02_-25.wav +room-noise/room_02_-29.wav +room-noise/room_02_-28.wav +room-noise/room_02_-35.wav +room-noise/room_02_-30.wav +room-noise/room_02_-19.wav +room-noise/room_02_-34.wav +room-noise/room_02_-27.wav +room-noise/room_02_-37.wav +room-noise/room_02_-05.wav +room-noise/room_02_-07.wav +room-noise/room_dishwasher-60.wav +room-noise/room_dishwasher-57.wav +room-noise/room_dishwasher-16.wav +room-noise/room_dishwasher-01.wav +room-noise/room_dishwasher-67.wav +room-noise/room_dishwasher-56.wav +room-noise/room_dishwasher-24.wav +room-noise/room_dishwasher-10.wav +room-noise/room_dishwasher-43.wav +room-noise/room_dishwasher-18.wav +room-noise/room_dishwasher-65.wav +room-noise/room_dishwasher-21.wav +room-noise/room_dishwasher-35.wav +room-noise/room_dishwasher-13.wav +room-noise/room_dishwasher-46.wav +room-noise/room_dishwasher-48.wav +room-noise/room_dishwasher-49.wav +room-noise/room_dishwasher-62.wav +room-noise/room_dishwasher-23.wav +room-noise/room_dishwasher-03.wav +room-noise/room_dishwasher-14.wav +room-noise/room_dishwasher-26.wav +room-noise/room_dishwasher-34.wav +room-noise/room_dishwasher-22.wav +room-noise/room_dishwasher-70.wav +room-noise/room_dishwasher-41.wav +room-noise/room_dishwasher-37.wav +room-noise/room_dishwasher-53.wav +room-noise/room_dishwasher-30.wav +room-noise/room_dishwasher-09.wav +room-noise/room_dishwasher-12.wav +room-noise/room_dishwasher-32.wav +room-noise/room_dishwasher-72.wav +room-noise/room_dishwasher-17.wav +room-noise/room_dishwasher-06.wav +room-noise/room_dishwasher-47.wav +room-noise/room_dishwasher-42.wav +room-noise/room_dishwasher-29.wav +room-noise/room_dishwasher-11.wav +room-noise/room_dishwasher-61.wav +room-noise/room_dishwasher-64.wav +room-noise/room_dishwasher-73.wav +room-noise/room_dishwasher-33.wav +room-noise/room_dishwasher-25.wav +room-noise/room_dishwasher-19.wav +room-noise/room_dishwasher-36.wav +room-noise/room_dishwasher-51.wav +room-noise/room_dishwasher-52.wav +room-noise/room_dishwasher-58.wav +room-noise/room_dishwasher-50.wav +room-noise/room_dishwasher-44.wav +room-noise/room_dishwasher-54.wav +room-noise/room_dishwasher-04.wav +room-noise/room_dishwasher-39.wav +room-noise/room_dishwasher-05.wav +room-noise/room_dishwasher-66.wav +room-noise/room_dishwasher-59.wav +room-noise/room_dishwasher-63.wav +room-noise/room_dishwasher-68.wav +room-noise/room_dishwasher-15.wav +room-noise/room_dishwasher-08.wav +room-noise/room_dishwasher-02.wav +room-noise/room_dishwasher-71.wav +room-noise/room_dishwasher-20.wav +room-noise/room_dishwasher-45.wav +room-noise/room_dishwasher-31.wav +room-noise/room_dishwasher-38.wav +room-noise/room_dishwasher-69.wav +room-noise/room_dishwasher-55.wav +room-noise/room_dishwasher-40.wav +room-noise/room_dishwasher-27.wav +room-noise/room_dishwasher-28.wav +room-noise/room_dishwasher-07.wav \ No newline at end of file